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ABSTRACT

Sequences definirg a relaticnship between the mumber of parameters in a
Pourier factor demanc system and the sample size such that elasticity estimates
are asymptotically ncrmal are characterized. The main technical problem in
achieving this characterization is caused by the fact that the minimm
eigenvalue of the exgected sum of squares and cross products matrix of the
generalized least squares estimator, considered as a function of the muber of
parameters, decreases faster than @ny polynamial. This problem is adcdressed by
establishing a unifora strong law with rate for the eigenvalues of the sample
sun of squares and crass procucts ratrix. Because the minirmm eigenvalue
decreases faster than any polynamial, these sequences that relate parameters to
sample size grow slowar than any fractional power of the sarple size.

‘Researc.h supported in Brazi) by Empresa Brasileira de Pesquisa Agropecuaria
(EMERAPA) and in the !JSA by Natiansl Science Poundation Grant SES-880801S5,
North Carolina Agricuitural Experizant Station Projects NCO-5593, NCO-3879, and
the PAMS Foundation.
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1.1

1 INTRODUCTION

The focus of this paper is the dzterminatiocn of a class of rules for
increasing the mmber of parameters of the Fourier factor demand systez that
imply asymptotically mrnél elasticity estimates. The consistency of Pourier
flexible form elasticity estimates was established in Elbadawi, Gallant and
Souza (1983) and asymptotic distributions of test statistics under norzal

errcrs were derived in Gallant (1982).

The Fourier factor demand syster is a linear, multivariate model of the

form
Yt'é'(xt’e+“t t=1,2, ....n

where $'(x) is an M by p matrix whose leading columns correspond to a Translog
factor demand system (Christensen, Jorgenson and Lam, 1975) and remaining
colums are derived from a multivariate Fourier series expansion. The true

data generating model is presumed tc be

Ve = £0x,) + e, gle,) =0, Cleel) =0

where £° is derived from a log cost function g° using Shephard's lema (Deaton
and Muellbauer, 1980). The (N+1)-dimensicnal vector x containe log factor
prices and log output as elements; ¢° is defined over a closed, bounded
rectangle X ¢ RNH. Oar methcds of proof will accommodate drift so that one

can write £: and g: 1f desired.

Each equation of the system is & linear series expansion of the sort
studied by Andrews (1939) which is the most recent and camprehensive paper on
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the subject. Andrews' paper contains an extensive bibliography and scme of the
sharpest results available.

In crder to address our problem, we need to extend Andrews' analysis in two
directions. We must make the multivariate extension. And, we must explicitly

accamt for the fact that the sequence of minimumm eigenvalues correspanding to
the sequence of p by p matrices

6, =¢ 20 e (%) p=1, 2, ...

is rapidly decresasing: that is, pnkn‘n(ep) tends to zero for every positive
integer m as p increases. Andrews bounds this sequence from below so his
results do not apply to our problem. The first extension is reasanably
etraightforward. The secand 1s more delicate. To accomplish it, we prove a
wniform strang law with rate for the eigenvalues of the matrix '

6 =17 e 1071 (x,)
® B ot

using results from the empirical . zocess literature. For the technically

inclined, this wniform strong law is one of the more inferesting aspects of the
Peper. We study deterministic rules but these are easily extended to adsptive
rules using results due to Eastwood and Gallant (1987); see Andrews (1989) for .

exanples.

We derive sufficient conditions such that ela!sticity:estimates are
asyzptotically norzal and examine the class £ of rules (p )-_, and cost
functions & that satisfy them. Not surprisingly, given that Mpin @) 18
rapidly decreasing, rules in £ grow slowly, slower than any fracticnal power of
n. The fimcticns in & are infinitely many times differentiable. This is not
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as restrictive an assumption as might first appear as the collection of
infinitely meny times differentiable functicns defined on X is a dense subset

-~

of any Sobolev space

.z (Ad=ms, 1975); 1“ i3 defined in the next

¥n.q QX
section. Thus, it is a very rich collection with which to describe production
technologies. Alternatively, the cdrift nechanim can be exploited to expand
the class &; see Section 5. This amounts to an assumption that as data is
acquired, the true model becomes ar. increasingly rich departure from the
Translog which is the leading special case. Some would regard this assumption -
as a realistic description of the attitudes of practitioners and others would
f£ind it'max:ceptable. '

The reascn that the minimm eigenvalues of Gp decline is that the Fourier
flexible form incorporates two modifications to the classical mltivariaté .
Pourier expansion. To get rid of unacceptable boundary conditions, the domain
I 1s effectively a subset of the natural damain Q = [lj; [0, 2m) of a
miltivariate Fourier series expansion of the form X = 1:1[:. 2m-¢]. 'no
irprove performance in ﬁnite. samples and to provide a means to test
interesting hypow, a Translog model is added as the leading term of the
epansion. The rates of decrease due to variocus combinations of these two
modifications to the classical exprnsion are displayed in Table 1. We work out
the implications of the last entry in Table 1 because it is the expansion used
in practice. This analysis also covers the third entry. The other two admit

fractional powers of n as rules (pn).

The major limitations of the paper are twofold. We assume homogeneous
errors. While it is clear that we could accommodate heterogeneity by adapting

Bicker's analysis (1967, p. ¥7) to our situaticn, as does Andrews to his, we &
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not do 80 because shat is at present a tidy, clean analysis would become a
cluttered mess, distraqt:ng from the main focus of the paéer which is to gain a
qualitative feel for the rates of expansion that declining eigenvalues permit.

We consider the generalized least squares estimator rather than the
seemingly unrelated estimator because the latter is not essential to the
objective of the paper and the technical problems in treating a random scale
estimate f.l that depends the error process appear fomidablé. Apparently, a
specialized collection of unifcrm strong laws with rates would need to be
established. Were an independent estimate available, ocur analysis would cover
seemingly wrelated estimates. An estimate computed from a holdout sample

_would satisfy this condition. '
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Table 1. Rates at wh'ch eigenvalucs decrease.

a

Bpansion

Minimm eigemvalues of Gp

Fourier series cn Q
Translog + Pourier series on Q
Pourier series en X

Translog + Pourler series an X

Bounded away from zero
Decrease at a polyhomial rate
Rapidly decreasing

Rapidly decreasing

*see Section 5 for a verificaticn.
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2. ESTIMATION ENVIRONMENT

. The producer's cost function c(p,u) gives the minimm cost of producing
output u during a given period of tine using imputs g = (ql, Qo eeee qN)' at
prices p = “’1' Pye «cvo pn)'. It is more convenient to work in terms of log

cost as a function of log prices and log cutput. Accordingly, let
ki-&npi*mai, i=13,2, .... N
Vg (0 a0 gy,
and put
g(x) = g(®,v)
= #n c[(1/a)eP(R,), ..., (1/ag)ep(Ry), (1/3g,,)ep(v/Ag, )]
where & = (8, R, -:-, 9.N)."andx- (®', v,

The By) e Ay ).Nﬂ are positive scaling factors. Their choice has no

substantive impact since a choice of a,

only amounts to changing the units c¢f measurement in which factor prices are

other than wnity for 1 =1, 2, ..., N

stated. If one works with quantities as data, the ith quantity in original
wnits would be divided by a, to get the quantity in the new units. If cne
works with cost shares as data, there is no need tc make any campensating
adjustments as the price and quantity adjustments would cancel, viz. 5 =
ep(R,)(q,/a,) = (3,p,i(q,/3,). The choice of ), ad 3, , amomts to a choice
of a scale of measuremmt for cutput and is also irrelevant to the substance of
the discussion. We shall restrict ttention to scoe closed rectangle X in RT3

that contains the obse:ved data :nd shall not attempt to approximate g off X.
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The scaling factors are to be chosen so that n’;::[:, 2re]l e XX c
;i[o. 2t] for scme small € and some positive )\ where )X indicates
mltiplication of every element of Z by .; see Gallant (1982) for additicnal
detalls. We shall assume that the obsersed semuence (% )¢, is a rande
sample from a distribution function u(x) definad over I with a contimuous,

bounded density function.

The cost function itself is assumed to possess the properties of linear
homogeneity, monotanicity, and concavity. letting 1 cemote a vector whese
entries are all cnes, letting Vg = (3/32)g(2,v), and letting Vg =
(3%/3292')g(2.v), the equivalent conditims cn the lo¢ cost function g(4,v) are
(Gallant (1982)]

Ro. Linear homogeneity: g(R + 11, v) =1 + g(%.,v},
Rl' Monotonicity: Vg > 0, 1'Vg = 0, (3/3v)g(R.v) >0,

Rz. Concavity: v'“’g + VgV'g - diag(Vg) is a negative semi-definite matrix of

rank N-1 with 1 being the eigemvector with roat zero.

Letting ' = (pqu' Podgs «oev quN)/():i_lpiqj) be thx: N-vector of input cost
ghares, the firm's factor demand system is given by Sephard's lemm as

8 = (3/3%)g(8,v).

Elasticities of substitution °ij at a peint xc' = (9.°.~:'°) are elements cf the

matrix
b -1 vz 0 - diza 3 -1
L = [diag(Vg)] “[V'g + VgV'g - dizg(Vg)][daiaj(Vg)] ~,

evaluated at x° and price elasticities "13 are elemen:s of the matrix
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n = I diag(vg:,.
evaluatedatxomreﬂemofncomspmdto inpute and the colums to
prices [see Gallant (1982)]. We shall let o(g) represent a generic entry from

these matrices.

This ie a determin‘stic versiocn of factor demand theory and can be regarded
as implying observed factor cost shares follow some distribution with location
parameter (3/3R)g(R,v). When just factor cost shares are cbserved, the most

comxn distributional assuwrption in applied work is that

Yo = fx) + 6. Lle,) =0,  Cle..el) =

where Yy is the vector of observed factor cost shares s, with the last element

discarded, and ;(xt) is (3/8)g(% ) with the last element discarded. Since

RY
t't
shares sum to cne, any distribationsl fact regarding the last share can be
- q _ oN-1°

gotten from the identity SNt 1 2j=1YJt' Were the last share not

discarded, the variance of the errors would be singular. Since the statistical
methods that we discuss below have the property that estimates are invariant to
which share is designated last, cdeletion is the simplest way to handle the

singularity.
When, in addition, total factor cost is observed, the model is
Ve ™ f(xt) te, &‘(et) =0, C(et,e{) =0

where: Ve is an N-vector with observed total factor cost as its first element
and ;t £111ing in the rexzining elements; f.(xt) is an N-vector with g(xt) as

its first element and f(x,) at the tail; and, sintlarly, e, has an additional
error at the head and @, at the tail.
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We hall need a campact notation for high order partial derivatives:

Dg(x) = (3*1/21)ee« (B N+1/2 N ) g (%) -

where A = (Al, Az' evey >‘N+1’ has normegative integers ss components. The
crder of the partial derivative is [A| = )f,*_’,i;xﬂ and wten |A| = O take

Dog(x) = g(x). In terms of this notation, the Scbolev rorm is:

Sobolev norm. For q with 1 € g < » th: Sobolev norr of g(x) with respect
to a distributicn ux defined over X is

A q 1/q
gk = {D g(x)} "du(x) .
B.q.4 [lxil:sm Ix ]
For ¢ = » the norm is

i - ap sp [Dgxl.
B on xex

To avoid clutter, let ligll represent lqmm ®, L in a statement such as

ml’l#
- < < ll.
ngﬂm'q'#ssforalll_q_e u
The advantage of the Sobolev norm is that if the nor: (el of the error

m.g,K
e=g- g is emll for m = 2 then the erro: when approetimiting g-elasticities

by ;-elasticities will be smmll. Stated differeatly, elasticities are
cantimioous in the Sobolev topology. This !»eing the case, it is nmatural to

restrict attention to cost fmictions contained in some Sitolev space i

Yoqu™ (@ Mol o <= . o

that has m > 2. The Pourier flexible form can be used t3 construct dense

subsets of Vm . It ig defined in terms of elementary :u-.ut.‘.-kade:ces:

q.u
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Rlementary malti-:ndexss. A multi-index is a vector whose clmsnie are
integers. Let -

~

Yoy ™ k2 KL £ X0

denote the set of multi-indexes of dimension N+1 whose length |k| = f;:ilkil
4s bounded by K. First, delete fmxuﬂ the zero vector and any k whose first
non-zero element is negative. Second, delete any k whose elements have a

comncn integer divisor. Third, arrage the k which remain into a sequence
x;m ..(ka: a=1,2, ..., &)

such that k., k,, ""kﬂﬂ

decreasing in «. Define J to be th2: smallest positive integer with

are the elementary vectors and 'ka| is non-

Xppy © (Fe: @ = 1.2, ooy B 3 =0, 11, 32, ..o, £T). U

This construction can be amtomated using FORTRAN code in Momahan (1981) or
using PROC FOURIER in SAS (1986). 'In terms of this notation, the Fourier form

is written as:

Fourier flexible form. Define

gx(xle) =, + b'x + (1/2)x'Cx +§1{“0d + 2j§1{u3aoos(1>.k&x) - vjasin(jxk&x) ]}
where € = -T5_u 2% k! and
© = (uy ©g. Ol1)r *oe ezm)';
o) =B = (et By
®a@ ” Moa’ Y’ Via* * Use’ Vad! | | ﬂ
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The length of the parameter vector © i3 p =1+ (N 4 1) + A(1 + 2)) sK“
where a(X) = b(X) means that there exist tw positive ccnstants such that
€,b(K) £ a(K) £ c,b(K) for all K. The following result implies that

m = (g (-16): e ¢ ¥, K=0, 1, ... )

t .
i8 a dense subse ot‘lfn'q'ﬂ

THECRFM 0. (Gallant, 1982) If g(x) is contimuously differentiable up to

the order m on an open set containing the clesure of X then there is a sequence

gx(.léx) from Mm' such that

1S - ge(-180, o = oK ™HE) s K

forevery qwith 1 € g€ o, gvery A with 0 € <m, and every ¢ > 0. If g is
alsolimarwwﬂxémtee the IMMmeous functions in
m' the result is true with My replacing m'. Sinilarly, if M, denotes the
functions in M' that are both linear homogeneous and cancave and g satisfies

both restricticns and so on for other combinaticns of the three restricticns
listed above. []

It is easy to impose linear hcmogeneit'y <§x *the Pmn'ier flexible form:
Restrict the coefficients °(0) =b' = (c' bmlr' 80 thit the leading N
elements sum to unity, that is, i'c = 1, and pu " 0 if the leading N
elements of k_ = (5}, ky,;)' 9 mot sum to zero, that 43, if 1'r, ¥ 0. The
latter restriction is equivalent to restr.icting the choice of elementary multi-
indexes to the set

Xoner ™ Ky € Xy 3 Ky = (T Iqqeq)e 3'Tg = )
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when constructing gx(xl 8). Methods for imposing the other restrictions are
discussed in Gallant ard Golub (1984).

We shall assume throughout that the linear homogeneity restriction Ro has

'been imposed, as is usvally done in practice.. This 1s an important assumption

as it amounts to reducing the dimension of x from N 4+ 1 to N; see Lemma 1 of
Gallant (1982). Were this assumption dropped, N would have to be replaced by
N + 1 in every result regarding a rate that we report.

We propose tc fit the model
Yy = fxlx.10) + u, t=1,2, ....n
to data that was actually generated according to
Yo = (%) +e, .Lle) =0, Cle,,ef) =0

using generalized least squares. Above, fx(xle) is constructed from gx(xle)
exactly aslf(x) is constructed from g(x). Generalized least squares estimates
estimates are gotten by minimizing
; B . -1 .
s(e.Q) = o T [y, - fp(x.1€)1'Q “ly, - fe(x.1e)].
t=1

As tx(xle) is a linear functicn of € it can be represented as ¢'(x)e where ¢'
is an N by p matrix. Thus s(6,Q) is a quadratic form in ©

n
s =3 I 7 - #(xgora ty, - ¢ (x el
1

with minimm

1

- n - n
1 -1 - 1 -1
e-[= I, #0000 xy)] [= I, #xn vy
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From this estizate, g can be estimated by (i = g,(+|6) xx an elasticity

o =o(3) by ‘.’x - o[gx(olé)]. If the cost :unctim is no: eetneted together
with factor demands, then £ and Q replace ' ard (2 above wrd ¢'(x) has N - 1
rows. In order to have a generic notation that iepresents either case, let ¢
have M rows.

We shall henceforth adopt the convention that as K is increased, columms are
appended to the end of ¢' rather than inserted. This izplies a rearrangement
of the elements of © from that given above bu: w2 have ro need to devise a
notatian to keep track of it because any finite dimensicnal calculation that
ccncerns us is invariant to the ordering cf the cclums of ¢'. Also, because
of the way that the matrix C is parameterized, some columns of ¢'(x) will be
eact linear cambinations of predecessors for evex"y X ir. . We assume that
- these have been deleted in forming ¢' and e. .

Infinite dimensicnal representation. With these carwvantions, one can
choose a point 6, = (6,, ©,, ... ) in R® ind use its leading elements
eK - (el, ez. cese ep) to corpute gx(-lex}. If there i a g in Ym'e'z such
that

l,ém Boglel18g) = Sy 0 =0

write ga(o |e¢$ to represent g. Bvery g in mel ©.X has such a representatian
(E&dmunds and Mcscatelli, 1977). We shall ustally suppracs the subscripts o and

K and let the context determine whether °. , o its trnmecation ex is intended. U

.

Our methods of proof can accommodate (rifit. As drift may be relevant to
hypothesis testing or other applicaticns, we will assur> that the true cost
function is indexed by the sarple size n :nd denote it oy g:. The

ndll ol
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eanvspaﬂimdatamratmmmmmmdasym~f:(:%) +ctw1thct
uabawaﬁfgmmedtmg:asabow. '

An elasticity o(g) is called an evaluation functional since it is necessaxry
to be able to evaluate g, Vg, and vzg at the point x° in order to cogpute it.
Thus, our intercst is focused on estimates of D’0(x°) for A € 2. The
estimate Dg (x°|) 15 a linear function in 6 of the form p'e. As an
elasticity estimate is a rational function of such estimates its asyzptotic
distribution can be gotten by the delta method if the asymptotic normality of
p'e - Dg2(x°) can be established for each A with |A| £ 2. In the next
section we determine rules Py relating p to n, equivalently rules Kn relating K
to n, such that p'e is asymptotically normal when centered about its
conditional expectaticn C(p'él (xt)). In the section after that, we determine
the subset of rules K. that drive the bias term C(p'el (x,)) - D' (")
to zero rapidly enocugh to be negligible relative to the error term
p'; - 8(p';l (xt)). The sum of the error and bias terms is the estimate
centered about the object of interest p'e - DO (x”) which will in
consequence be asymptotically normal.
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3. ASYMPTOTIC NORMALITY OF THE RELATIVE ERROR

0f the asmumptions of the previcus secticn, the subset required for the

results of this section are as follows.
Assurptions. The observed data is generated according to
Y ( )"‘.t ‘F-I.'z. sees NN} N w3, zo coe

where (t:) is a sequence of functiocns that map X, a subset of l!"ﬂ. into |f4.
Throughout we shall write Ve instead of Yo' nand M are finite and fixed
throughout. The error process (et)t-l is an 1id sequence of random variables
that have comxon distribution P(e) with mean zero and variance-covariance
matrix

.
Q- Jee'dp(e).

We assume that 0 is nonsingular and factor its inverse as
0l =pp,

The process (xt):-l is an 144 sequence of random variables with comman

distribution x(x) defined on IX; (xt) and (et) are independent processes.
We consider the random variable

n
S22 1 way]

LI ; ):o( )0 0'(xt) .

and ¢'(x) maps each x in X to an M by p matrix. Note that ¢ depends only m p
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cﬂﬂatédepzﬂsmbothnandp. The objective of this section is to £ind
nﬂ.espnrelat:rnptoneudzﬁuat

5 p'e - Llp'el (x,))
RelErr(p'6| (x,)) =

war(p'e| (x,))

is asymptotically normally distributed where Var(p‘al (xt)) - (1/n)p'G;:,p.

In this secticn, but not elsevhere, p is an arbitrary, nomzero vector in RP, p
can take on any pesitive integer value, and the choice of p for one value of
(p,n) need not have any relaticn to the choice for another. . u

The ambiguity that arises when c;; does not exist is resolved by putting
the linearly dependent rows and colums of an to zero to get GO' putting the
corresponding elements of p to zero, andlettingG beag-invemeofs
Thus defined, G@ is unique and can be factored. Hhm.the conditions of
Thecrem 5 are in force, an is ncnsingular with probability one for all n large
encugh so cne could adopt any resolution of the ambiguity. However, with this

canstruction the algebra below is correct whether an is nonsingular or not.

Pix a realization of (x,). Then RelErr(p'e| (x,)) is a linear function of

the errors, viz.

I’n)p'G Q(x )P?
RelErr(p'el (x,)) = ; [ ] e, .
t=1 J[(I/n)p'Gmo]

We have the following result:
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THEOREM 1. If (xt) is a fixed sequence (a nonrandom sequence) then

-1
1(1/n)p'G__&(x )P’}
fim =t -0.
N« L& J[(l/n)p'Gqf]

_implies that RelErr(p'e| (x,)) is asymptotically normlly distributed.

Proof. We can write the relative error more compactly as

n
Relh'r(p'el %)) = }: (s't o) /8,

1 nt nt’
will follow if we verify Lindeberg's condition (Billingsley, 1979, p.310)

- -~ ' - 2 -
where ! (Iln)p'GHPO(xt)P . u, = Pe,, and s_ }:’; s .. The result

2
f4m 2 (8 ) I(lspeul 2 esy) (sp,u) dP(e) =0
t=1 I n nt

for every € > O where u = Pe and I1(A) denotes the indicator function of a set
A. By the Cauchy-Schwartz inequality
(s 17 [ 1spel 2 sy (spen® apte)

n

2,-1 2
R [ Thsptint = ey (epetten? e

IA

1A

tgl (Isntll/s )2 f I[Je'n e2¢ [la.,.u tu/sl,,] ] e"'z e ar(e)

-1
-1 -1
=\ Ilve'} 'e2¢€ | sup NIs_.li/s e'l "e dP{e)
I [ [*s&n MUAR
!
which tends to zerc with n because a;m s.:pls 5 usmu/sn 0 ad e' “e is
integrable. D
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‘Let 2(x) = &#(x)P' tdth elements denoted as zja(x) vhere §=1, ..., pis
theminde:anda-:l. <ess M 18 the colum index. Put
M p
Blp)=I I s zja(x)
=1 j=1 xeX
The following result relates the condition for asymptotic normality to the
‘ratio of B(p) to the smllest eigervalue of Cp+ It is stated and proved in
terms of the following notation: )‘min(c) and \mx(c) denote the smallest and
largest eigenvalues of a matrix G, tr(G) the trace of G, G(q) the ath colum of
G, and 6 2/2 the holesity factor of G™3; that is, G 1 = (67 1/3)171/2,

THECREM 2.
. 1(1/n)p'G J¢(x)P'] ‘[ B(p) ]1/2
1671 -
istsn ((3/n)p'Cp) B Apyn(Gpp)

"Broof: The square of the left hand side ig
p‘é;& (xt)ﬂ-ié‘ (xt)G;;p
hp'G p
preLp xm[c 2 2 tma 0 (x 1 (6221
r;p"’ )

li/n)t;—((s;;/ 2&(xtja’1&' (3¢, (G;;/ 3y

A

/a2 () (G m;. 1]

. ” r i -1 " s )
tim) qzluz(xtn(c,} Gtz ti i gy
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A

M
\ -1
(1/m) T ([200)] )" 2000)] (g g (O)

B(p) B
€ —0 0
n )‘nin(enp)
The implication of this result is that if P, is a rule relating p to n with
tinn_. B(pn)/[n )”M“(Gm: = 0 then RelErr(p'e| (xt).) is agmtotically
normal conditional on (xt). If the rule Py does not depend on knowledge of

.

(xt). other than knowledge that (xt) does not correspand to some mll set of
the underlying probability space, then the wiconditional distributicn of
RelBrr(p'e] (x,)) is asymtotically normal as well.

Our strategy for finding Py depands cn relating the eigenvalues of an to
the eigenvalues of

- -1 1]
s, J' (x)0 " (x) du(x)

by establishing a strong lav of large mmbers that holds with rate € wiforaly
" over the family

7, " (0'#(x)0" 2" (x)6/B(p): 6'6 = 1, © ¢ K}

when p = p_.

n Pirst, we need some additional notation and two lemxas.

Let £ denote expectation with respect to &xdu cr du, as appropriate, axd
let &‘n' denote expectation with respect to the empirical dietributicn of
n n ~— R
“°t'xt))t-1 or (xt}t_l, as appropriate. That is, fco f(e,x)
1 D
£ == £ B f = A,
gfmg I flegx)  © [[ tm.0) @ter2:t0,

and for £(x)
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f-ln I £ =
gf=n I f0x) ct={ 200 autn) .

With this rotation, G = £ and G = £ 4071¢'. Note, there is a © with
'O = ' - ) - -
e'o=1and e ane )‘M.n(enp) g0 there is an £ in :’p with %(Gw)/ﬁ(p) cnf

ILPMA 1. The mmbder of e-balls required to cover the surface of a sphere
in RP is bounded by 2p(2/¢ + )P L.

Proof. The proof is patterned after Kolmogorov and Tihomirov (1959). Let
M be the maximm mmber of non-intersecting balls of radius /2 and center on
the surface of the unit sphere. If © is a point on the surface, then an ¢/2
neighborhood must intersect cne of these balls; hence © is within ¢ of its
center. If V denotes the volume of a shell in R° with outer radius 1 + ¢/2 and

immer radius 1 - €/2 and v denotes the volume of an €/2-ball, then M £ V/v.

2P721(1 + ¢/2)P - (1 - ¢/2)P)/1pr(p/2))

V/ive
2/ 2(e/2)P/1p0(p/2) )

= 1+ e/2P - (1 - e/2P)/(er2)P
= (1+p(1+e/27 Yes2 - 14 pi1 - 5/2)P e/21/(e/2)P
" [by the mean value theoran]
< 201 + /20 Y (er2)P? |]
L2MA 2. letp ~wandc =Oasn-w If nc§> 1/8 then

p[ =2 15,t - ot > ec, ] <16 p, (8¢, + DPn * expl- 3 nel).

Py
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Proof. The proof uses results froo Pollard (1984, Chapter 1I) which
require a demonstration that 79 is bowrded and a computation of the metric

cntrcpyot?p. The £irst two paragrapts take care of these details. The third

paragraph has the main argument.
If £ isin7ptl'ms\pw 1£(x)' < 1 since

et 10 e/B(p) » ©'22'6,B(p)

" Ty (8'2 ) /B(P)

% Ty 89 °1Z g 1 /B(P)

" BN T 12 o 1 7/B(R)
o et L, 1. (20 (00 1%/B(P)

% 1.

A consequence of this bomad is cnfz <€ 1and Var(cnt) < 1/n for each £ in 7p'

From Lemma 1, the mriber of /2-balls required to cover the surface of the

wnit sphere in B 1s bowded by N, (c,p) = 2p(a/e + 1P Let Qj denote the

centers of these balls @nd put 5 = és-m'le'éj/a(p). Now £ = e'¢0 1¢'e/B(p)

mist have € in some ball so
- - [ -1 v - -. -1 .-
mi.rxJ lgj £ mnJ 134 “¢'0,/B(p) _ ejm ¢ ej'/B(P)

= min, (6 - 6,)'Z)(2'{® + ©,)]/B(p)
3 s 3

s m:lnj B - ej:'zunz'(e + ej)!!/B(P)
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e 0401210y Tmy [ (0 + 002117 /B ()
= mj et - ;jnz“z(a)“z] [re-ate + ;J“z“z(a)ﬁ}m(?’
- min, fo - ;3“? + &1 [T 302 g)1°] /B(E)
< min, g0 - 8 0108 +10,01Le, T, (24, (x)1%/B()
< (¢/2)(2)B(R)/B(P € c.

°. '
et cn (1/!\)I:.1th (xt) where S, takes an the values 11 with equal
probability, independently of "‘t’?-r From Pollard (1984, p. 21)

Pew 10f-001 >8] < 42 s Igotl > 2¢ )
teT fc7 .
Pn ) Pn
' : O, 1 2 2
p[ i 2:,,‘ (x,)] =2 N (e,,p,) @[~ 3 ner/(max, £,07) ]
. .
provided Var(E,£)/(4c )% € 1/2. By the bound above we have max, cngg <1and
var(cnf) s 1/n whence, substituting for N,, the secand inequality becomes

o b1 1

[ = 1Gfl > 2, (x)] < 4p(4/e, + 190 ep[- 4 ne?] .
Py 4

provided Var(c £)/(4e)? < (16nc2) ™! £ 1/2. Since the right hand side does

not depend on the canditioning random variables (xt)wehave

-1 1
P[ ?g ll‘.‘:ﬂ > 2c] < 4p,(4/e, + 1)Pn " epl- 3 mﬂ .

Pn

provided 'ne: > 1/8. Substitution into the first inequality yilelds the result.n
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.

femma 2 can be used to estiblish & wniform strong lzv with rate:

-

THECREM 3. :etpnsn“tormawithosau. Ito<sp< (1-a)y2
then

-3
Plewp |C2-0f] >n
[fu' n

/2 thfiattely otten] -o0.
P, '

Proof. If I° . PPy, |§nt -0t > 8 ) <wforec = n $/16 then the

result will follow by ‘he Borel-Cant2114 lemma. With this choice of €nr

nei = 728,286 > n%/206 which exceedz 1/8 for n large encugh. By Lemma 2, we

will have ):';:_1 P(sWpe .y, 18,8 - £F1 > 8e) <o if
n
-1 1 2 1t+c
[Pn“/cn + l)pn epi- 3 n:n)] n <€B

for same B, c > 0. Taling the lozarithm of the left hand side we have for
large n that

R0g P, + (B, - 1)80g(4/e, + 1) - ne>/2 + (1 + c)tog n
< fog 0% 4 (o - 1)00g(64n® + 1) - n172P/256 + (1 + c)tog n

(1 +a+ ¢)ogn + n*rog(35nf) = n 28 286

A

Rog(65)n + (1 + @+ ¢ + ;m)Rog n - n 2R/286
< 2an®0g n - n"%/256 .

The right hand side is negative for 1 large encugh because 0 € x < 1 - 28. D
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He can now state and prove the main result of this section.

THEP®M 4. If pn’-ansﬂa

BUP) Mgtn(% ) < . o osp <2
p, <% : 0<a<1-28

PL B(R,)/Agy (G, o ) > 2 infinitely often ] = 0.
n

Procf. Suppose e lﬁnt -0t = nP/2. There isan f = e'm'lo'els(pn)

in 7Pn such that )\ o (Gn,p )/B(pn) - cnt vhence

AutnCa,p )/BF,) = &y e'¢  4'e/B(p_)
2 cortq Yere/Bip,) - 0 P/2

2 3 (G V/B(R,) - n#/2
2Pz

Thus, T 18,£ - &1 < nP/2 implies Agin(Gn )/B(p )y2nf/2. The
contrapostit cive is B(B,)/Agyn (G, ) > onf .unpues supwp 6.t - ot > n B2,
Tins
P(B(p )/Xm n'p ) > 2f 1.0. 1< P[sup 18, - ot} > n"’/z 1.0.].
fapn
Apply Thecren 3. n
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Asymptotic normality follovs immdiately.

THEOREM 8. 1If Pn satisfies

BBy Agtn(Gp ) < of 0sp <12
P aEn ‘osa<1-28
then
p'18 .20l ())] Z
. ==+ N(O, 1)

Nar(p'el (::t) )
both conditionally on ,xt) and urcorditionally.

Proof. By Theorem 4 P[ B(p )/[x AatnC,p 11 2 £71/2 1. 0.] = 0 whence
fim _ B(p )/[n M(G‘ P, )1 =0 except for realinticns of (x,) that correspond
to an event in the \mderlying mbarility gpace. that occurs with probability
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4. A BOOID N 'CHE RELATIVE BIAS.
In addition to the assumptions lis:ed in the previcus secticn we require
the following assumptions for the results of this section.

Assumptions (contimed). The log st functions go(x) are (m+1)-times
continmously differentiatle on an open set containing X which is a closed,
nonempty rectangle in l!“u. Lincar honogeneity is imposed on g: and gx(ole).
The distribution u(x) hacs a contimicus density function defined cver . The
objective of this gecticr is to ind rales Kn relating K to n such that the

relative bias *

3 glp'el (x,)) - Dg_(x1eD)
RelBias(p'e| (x,}) = ——

Jvar(p';l (=)

tends to zero with n where |[A\] = 2 € m. Unlike the previous section where p
could be any positive integer and ¢ wss arbitrary, in this section each p will
correspond to some K so that p tales ciscrete jumps as K increases and p is
defined by the relation: nr‘gx(x°|e) = p'e for all © in FF. 0

The bound cn\relat:l\m bias that we derive is stated in terms of the error

in a Fourier flexible fo:m approxiration to a log cost functicn:

Truncation error. Fur the sequernce of cost functions (g:) above define

[e]
T 5B g, 0 - gl ey o 0

when g: # g° for all n, Thecren 0 is not enough to deliver a polynomial
rate of decay for 'rx. Qe can impuose polynomial decay using the following

construction: In the rexesentztimn yﬁ(-le). note that each elementvei of ©
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except the first fow corresponds to a sine or cosine term with argument

(Ajk?!). Put “1 - Amlk | for these andci = )\ for the first few. Choose
z 0 to satisfy 2:_1(011) < o. In forming the sequence (gn).

restrict attention to e in R® with |em| < 91 and put gn - ga(-len).

~mtR+€

With this comstruction, 'I:x = o(K ) for every € > 0. Similarly, to force

the sequence (T, )todemasemrapidlyﬂmmypalmial (called a

rapidly decreasing sequence) choose 6 Otoaatisfyzi_i(a ) e < @ for

1-
mmtege:'n>0mdtomﬁxeseq‘m(qn)asabwe.

Incidentally, a bound on B(p) can be deduced from these a,

- P 2
sup,ul(a,'ax")cos(xjk&x)l < ay forw=1, ..., N md_zi-d(qi’ =
,_0(1)"+1 = K2, Por additicnal details, see Gallant and Monshan (1985).

since

The next theorem bounds the relative bias. Notice that this bound does not
depend on (X, } so the relative bias is bounded both canditicnally and
uncenditionally.

THEOREM 6. RelBias(p'él(xt)) < mr'xrzump'l + B(p)/p'pl.

. PY - ‘ ' -

Proof. e = £(6]{x,)) minimizes C_[g,(xle) - g0)'Q [gy(xI6) - ¢2)
where, recall, t‘.‘n denotes expectation with respect to the empirical distribution
A, of (x t t-1 Let g’°(~|e:) represent q:. Pirst we derive two
inequalities:

e - o, .0
18(pel (x,)) - D'g_(x°1eD)|
< 186"l (%)) - Dg (61611 + 1D°g(x160) - Dg (16011

= Ip'(e, - )1 + 1Dg(x°16]) - Dg (xIeD)1



‘e 1or 2200172 (0® - o
= tpr (o f* (e F o) - e + T,

= {torszpitee; - eyra e, - 1} + 3

= Lp'GIpIVE g lxlen) = g(x130)1'0 gy (xie)) - gylxied)] + Tp.

s loyixle]) - gy(xied):'a g (xie)) - g (xied)]
s 98 logtxien) - 210 g, (xi a:) - o))
+ 42 o (x1e0) - 21107 (g (x160) - &)1
< 208 [ (x167) - 9910 [gy(x162) - ¢O))
[because @ is the mininizing value] |
< 20 07108l x16D) - &)1 gy (x16D) - &)
= 20 0 gl 16D) - Lho,2.x
< 240, 07 Mg (-160) - g, o
< 20y 07T,
Substituting the second inequality irito the first we have:
RelBias(p'e| (::;))
< TG 2p) (2) (D ST 1T + TI/VT(1/mIp" (G 3 )p]

-1 -1,
= AT 200 07 + 1/t (G Pl

4.3
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The argument is completed using the inequality xw(ﬁm)ln(p) < 1 from the
proof of Lemma 2 to get

=1 - 0 '
VPG dp = 2 (6 )/p'p = (BR)/P'PIIN (G }/B(R)] < a(p)}/p' p- 1
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8. ASYMETUTIC NORMALITY OF ELASTICITY ESTIMATES
As seen from the results of Secticr. 3, the behavior of the sequence of
: -1
minimm e ues (A . 6 ))* _ of tre matrices G -I '
genvall ( min p))p_x b *(x)0 “#'(x) du(x)
determines the class £ of sequences (p‘_ );_1 that imply asymptotic normality of
the relative error in an estimate of a derivative. Given a sequence (pn) from
&, the results of Secticn 4 determine the rate at which the sequence of
truncation errors (Ty)p , mist decline in order that the relative bias in an
estimate of a derivative lends to zero with n. The rate of decrease in the
sequence ('Ix) determines he class & of log cost functions that admit of
" asymptotically normal elasticity estimctes. In this section, we work through

this construction to detemine # and &. Throughout, every p corresponds to
some K; ml}t!atps!!".

Put ¢ = Xy (G,). We claim that the sequence Oy gy 1= Fapidly
decreasing; recall that ripidly decreasing means umx_“ﬁx = 0 for every m.
This claim is ve.rified as follows: Without loss of generality, assume that
putting the scale factor (n the definition of the Fourier form to wnity malkes
the closed rectangle X a 'xroper subsiet of Q - i:i’(o, 2rr] without boundary
points in common with Q. Given values for the elements of © in GK('IO) that
correspand to the Transloj part cf the Fourier form, uy + b'x + (1/2)x'Cx,
there is a periodic function h defined on Q that possesses partial derivatives
of every order and agrees with the Trarslog part en I (Edmmds and Moscatelld,
1977). A Fourier series xxpansicn hx ut~ h will have §h - hl:‘]..z.p <
ih - hxul,o,Q - o(xﬁlﬂ) for every m and every € > 0 (Edmrds and Moscatelld,
1977). Put the negatives of these coeificients in the corresponding entries of
© in gx(-le) and one has
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"x - xmin(ep)

< 0'G e/e'e
0o/

= A 0B - 1yt 1%/e'e

~mtlt+e

= o(K )/e'e.

Parseval's equality implies that €' has a finite limit as K - e.

A useful characterization of a rapidly decreasing sequence is obtained as
follows. If K™\ - O then fogh, + miog¥ - —» for any m. This implies that for
each m, 2og>«xlaogx <-m for all K large encugh. Thus logkx/aog!'. = -3(X) for
scme positive, increasing function a(K). Equivalently A, = k2K _
Conversely, A, = K%} for sme positive, increasing function a(K) implies A
- e-bl(

is rapidly decreasing. As an eample, )y corresponds to a(K) = bK/fogK.

We can now determine the class ; recall that B(p)sfhz. The first
candition of Theorem 5 requires that B(p)/ <n? for some g, 0 € B < 1/2,

which izplies [N + 2 + a(K)]2og(K) < pfog(n). Thus, (X ) mist satisfy
a(K,)%og(K ) < Baogin) for same g, 0 S B < 1/2.

The implication of this relation 1s that xnmst grow slower than any
fractional power of n; more precisely, na/!(n~0asn-ooforarzya>o. Since
pz!t“,ﬂxesmistmeotpn. Aspninn'easesslwertbananytnctimal
power of n, the second condition of Theorem 5 is always satisfied and we have
that ' '

¢ = {(p): b, = K, a(K)t0g(K ) < prog(n) for scme g, O < B < 172}

is the set of rules that satisfy the conditions of Theorem 5.
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To determine b, we first nots tat the sequence (p,) with u{‘)“’{;’ -m
bounds every soquence: in P, Since K %)z e« gre < oty far every
(p,) in @, the bownd inT l2 A7 + B(p)/p'p] 0f Theorem & camnot decrease if
Ka‘x)'l‘x-rxl).xdoes:ot tend to zeo as K ~+ . Thus the set 9 of sequences of
log cost functions (g:) for which wr can make use of Theorem 6 (having already
invoked Theorem 8) satisfies

vefcd: /g +0asK- o}.

If one is not willing to exploit drift and holds g: fixed at some g° for
every n then g° must te infinitely many times differentiable if 'rx is to
decrease fast enough to damp 1/>x.

If ane is willing to work within a paradigm that assumes that the true cost
thimégmslwlymytmﬂemlogasdataisaaquired. then cne
can always choose a seguence (g:) that will driva%tozeroasxvpidlyas
required by the choice of (p} from o, The extreme form of this view is that
the fitted model is ccrrect (Huber, 1973) in which case T, = O regardless of

K
the tail behavior of e: in the reprisentations g: - gﬁ(ole:).
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Programa ]I. Gerac¥o ¢ Iransfer@ncia de Tecnologia

0 Programa de Geragdo e Transfer@ncia de Tecnologia
& a resposta do IICA a dois aspectos fundamentais: (i) o
reconhecimento, por parte dos paises e da comunidade
técnico-financeira internacional, da import3ncia da tec-
nologia para o desenvolvimento produtivo do setor agrope-—
cudrio; (ii) a convicgdo generalizada de que, para apro-—
veitar plenamente o potencial da ci@ncia e da tecnologia,
é necessdrio que existam infra-estruturas institucionais
capazes de desenvolver -s respostas tecnolégicas adequa-
das 4s condig¥es especificas de cada pais, bem como um
lineamento de politicas que promova e possibilite que
tais infra—-estruturas sejam incorporadas aos processos
produtivos.

Nesse contexto, o Programa 11 visa a promover e
apoiar as agVYes dos Estados membros destinadas a aprimo-
rar a configurago de suas politicas tecnolégicas, forta-—
lecer a organizagdo e administrag¥o de seus sistemas de
gerag¥o e transfer@ncia de tecnoleogia e facilitar a
transfer@ncia tecnolégica internacional. Desse modo sera
possivel fazer melhor aproveitamento de todos os recursos
disponiveis e uma contribuigd¥o mais eficiente e efetiva
para a solug¥o dos problemas tecnolégicos da produgd3o
agropecudria, num 3mbito de igualdade na distribuiglo dos
beneficios e de conservagdo dos recursos naturais.



.

INSTITUTO INTERAMERICANO DE (COOPERACAO PARA A AGRICULTURA

.~

0 Instituto Interamericano de Cooperagl0 para a Agricultura
CIICA) & o organismo especializado em agricultura do Sistema Intera-
mericano. Suas origens datam de 7 outubro de 1942, quando o Conse-
1ho Diretor da Uni¥o Pan—-Americana aprovou a criagdo do Instituto
Interamericano de Ci@ncias Agricolas.

Fundado como uma instituig¥o de pesquisa agronémica e de
ensino, de pés—graduagdo para os trépicos, o 1ICA, respondendo as
mudangas e novas necessidades do Hemisfério, converteu-se progres-
sivamente em um organismo de cooperaglIo técnica e fortalecimento
institucional no campo da agropecuidria. Essas transformagles foram
reconhecidas oficialmente com a ratificaglo, em 8 de dezembro de
1980, de uma nova convengdo, que estabeleceu como fins do 1IICA
estimular, promover e apoiar c¢s lagos de cooperagldo entre seus 31
Estados membros para a obtengl3o do desenvolvimento agricola e do
bem—-estar rural.

Com um mandato amplo e flexivel e com uma estrutura que per-—
mite a participag3o direta dos Estados membros na Junta Inter-
americana de Agricultura e em seu Comit® Executivo, o IICA conta com
ampla presenga geografica em tcdos os paises membros para responder
a suas necessidades de cooperaglio técnica.

As contribuigles dos Estados membros e as relagles que o IICA
mantém com 12 Paises Observadores, e com varios organismos interna-
cionais, 1lhe permitem canal:izar importantes recursos humanos e
financeiros em prol do desenvolvimnento agricola do Hemisfério.

0 Plano de Médio Prazo 1987-1991, documento normativo que
assinala as prioridades do Instituto, enfatiza agles voltadas para a
reativag3o do setor agropecuiirio como elemento central do crescimen-
to econdmico. Em vista disso, o Instituto atribui especial impor-
t8ncia ao apoio e promicl3o de acti:s tendentes & modernizag¥o tecno-
l4gica do campo e ao fortalecimunto dos processos de integragdo
regional e sub-regional.

Para alcancar tais objetivos o IICA concentra suas atividades
em cinco A4reas fundamentais, a saber: Andlise e Planejamento da
Politica Agrdria; Geragdo e Trans ‘eréncia de Tecnologia; Organizagdo
e Administrag3o para o Desenvol/imento Rural; Comercializag3o e
Agroindustria, e Saude Anima. e Sanidade Vegetal.

Essas Areas de ag¥o expressain, simultaneamente, as necessidades
e prioridades determinadas pelas prépios Estados membros e o 3mbito
de trabalho em que o IICA concent-a seus esforgos e sua capacidade
técnica, tanto sob o ponto de vista de seus recursos humanos e
financeiros, como de sua ‘elagd¥o com outros organismos
internacionais.






Esta publicagc30 foi reproduzida, em agosto de
1989, numa tiragem de 100 exemplares.












