Digitized by GOOSIG

00007747

1

—————

—_ . AR
TT (Contra interamenicand de i
-1- " T pocumentacién e)

.l" lafermazién tericola I

PREFACE: BACKGROUND AND oBJECTIves | 0 2FEB 1987 ',

Summary:
There exists a body of knowledge - techniques and strategies for manag-
ing data from scientific research - called Research Data Management (RDM).

The primary objective of the course is to present an introduction to the main
techniques and strategies of RDM.

RDM is a very applied art; the methods make sense only if applied in
practice. To apply the techniques one must use appropriate computer software.
At present, the best available software for this purpose is SAS. Although the
audience for this course may have some familia;ity with SAS we assume very lit-
tle background in the use of SAS for modern RDM. Therefore, the first part of
the course is an introduction of SAS programming, with spec:Lal emphasis on SAS
facilities which are particularly useful in RDM.

In summary, then, the objectives are: (1) to present SAS programming
techniques useful for managing research data and (2) to present the main tech-
niques and strategies for managing research data.

- 1] -

The advent of the electronic computer led very quickly to the crea-
tion ofnew disciplines, including computer science, systems analysis, and
various combinations and subsets of these disciplines concerned specifical-
ly with the efficient and secure management and processing of data. Both
the scientific and commercial communities were quick to take advantage of
new computer technology in the 1950s. Commercial users, recognizing that
data processing, per se, accounted for a great part of the cost of computer
operations, supported the study of efficient techniques and systems for
processing commercial data. Producers of highly efficient software for
processing commercial data were quickly rewarded. For an example one need
only look at the success of companies producing efficient sorting packages.

The scientific cammunity generally took a different direction. In
the 1950s and 1960s the most important scientific computing problems were
a lack of computational software. Great resources were applied to develop
general scientific software including, in the statistical area, the large
packages such as BMD, SPSS, BMDP and SAS72. In the early to mid 1970s practi-
tioners in the field of 'statistical computation’ began to realize that the
ability of scientists to collect data far outstripped the ability of comput-
ing personnel to effectively process and manage the data. Once data were
processed into a suitable format the statistical packages could easily pro-
duce most of the required statistics.

From that situation a new sub-discipline, Research Data Management,
was born. Research Data Management (quickly abbreviated RDM) consists of
the study of the problemns peculiar to managing and processing data from
scientific research, together with the strategies and methods developed for
solving those problems.

Same of the techniques of RDM are straighforward adaptations of com-
mercial data management and systems analysis methods. Sorting scientific data
is much the same as sorting commercial data, for example, and the same software is

- iii -

used for both. However, there are important differences between research data
and commercial data which require different data management strategies.

One of the important differences is the effect of data errors. For ex-
ample, campare a banking system for processing checking account transactions
versus a 'system' for processing data from a large social science survey. A
random error rate of 1% in the checking account system would be intolerable;
the same error rate in the social science survey might be literally impossible
to detect. Thus, quality control strategies are different for commercial and
research data management.

A second important difference involves the sizes and 'shapes' of data-
sets. Commercial datasets (as the checking account case, for example) often
have relatively few'variables' or 'fields' (typically 6 or 10 fields for check-
ing data) but a very large volume of records to be processed. In contrast,
scientific data frequently have dozens, or hundreds of variables and fewer re-
cords ("cases") than a "comparable'*commercial dataset.

Research Data Management saw several important advances in the 1970s.
There were important software developments, notably the data management ca-
pabilities of SAS72, SAS76 and SAS79. There were also researchers and teachers
who began to develop new techniques (as, for example, table driven systems, in-
ventory subsystems and 'statusbytes', all the Lipid Resecarch Clinics 'Visit 2
Data Management System' (Helms, 1972) and organize and consolidate knowledge in
the area. Examples of the latter include Bob Teitel at the Urban Institute, who
presented a series of papers at the Interface Symposia and the present author and
Wendell Smith at the University of Morth Carolina, who developed a graduate sub-
curriculum in Research Data Management.

As a result of the efforts of these and other researchers, in 1980 RIM is
beginning to be recognized as a hona fide discipline, generally within the area

-iv -

of statistical computation. There exists a body of knowledge, a collection
of techniques and strategies, for solving the important problems facing the
manager of research data.

The primary objective of this short course is to present an intro-
duction to the most important RDM techniques and strategies. RIM is in-
herently a very practical and applied science/art, however, and effective
presentation requires that the student practice the techniques and strate-
gies with real software on realistic data. At this point the best general-
ly available software for the management of small or moderate data files
is found in SAS79.

Therefore, we have chosen to present, as a part of the text, a brief
short course in SAS programming with emphasis on commands and procedures
important to RDM. '

I. INTRODUCTION

1. An Overview of Research Data Management:

What is it?

Research Data Management (RDM) is a collection of methods and
strategies for managing data from scientific research. This defini-
tion is straightforward, but to understand what RDM really is, one
must know something about managing data with computers and some of the
factors which distinguish research data from,say,commercial data.

These topics constitute some of the substance of the latter part of this
text.

The activities of RDM can be classed into five general categories:
1. Planning
2. Design and Implementation of RIM Systems
3. "Production" Data Processing
Analysis File Data Processing
5. Statistical Computation

These categories are approximately in the sequerce in which acti-
vities are performed for a particular project. Planning is obviously a
management function and includes estimation of needed resources (funds,
personnel, calendar time), acquisition of resources, scheduling activities,
etc. (Helms, 1978). Design and implementation involves RDM System Ana-
lysis for the design phase and the cfforts of RDM trained programmers for
implementation (programming, debugging, testing, documenting).

Once @nRDM system is implemented it is typically used, or operated,
by data processors, persons with the personality and skill to handle data
carefully, to input the data to the computerized RDM system and use the sys-
tem to detect and correct errors and produce well-organized, 'clean' master

files. This is 'production' data processing. Production data processing
work tends to be routine, tedious work.

The master files resulting from production data processing are u-
sually ill-suited for statistical analysis, in part because anRDM system
is usually designed to optimize the production data processing phase. In
addition, master files may have a structure which is too complicated for
direct use by statistical analysis programs. Before statistical computation
can be performed (rhase 5), one must usually perform several tasks to pro-
duce analysis files from master files: this is the "Analysis File data pro-
cessing" phase.

Finally, one has files which can be input directly to a statistical
package such as SAS, to perform the desired statistical computations, the
last phase of the RDM process.

This discussion is, of course, very general. In a particular project,
one or more of these phases may be so 'easy' that it is essentially incor-
porated into other phases. In other, larger, more complex projects, every
phase may have a significant cost and require a significant interval of
calendar time.

Topics to be Discussed:

There is, clearly, far more material in the topic of RDM than can be
ocovered in a text of this magnitude. The topics to be covered here are:

1. SAS Programming Techniques

2. Companents of a General RDM System
3. Desigringan RDM System

4. Planning for RDM

RDM is such an applied art/science that to understand the techniques
the student must necessarily practice them. This practice requires the use
of appropriate computer software and at this point SAS provides the best
generally available RDM software for general projects of small-to-moderate
size. We do not assume the student has a background in SAS, particularly
those parts of SAS which are particularly useful for RDM. Thus we begin
with a short vur *e in SAS-RIM techniques. This 'sub-shortcourse' actually
provides a ...irly comprehensive review of SAS programming facilities and
relies heavily upon readings in SAS79. (SAS79 is our abbreviation of SAS
User's Guide, 1979 Edition).

In the second part of the course a general RDM system flowchart is
presented and each of the component subsystems is briefly discussed.

The third major topic, RDM System Design, has been omitted from this
short text. In part, this is due to the shortness of the course and, in
part, to the fact that RDM system design is still a fairly primitive art.

Planning for RDM is discussed briefly in Appendix I. RIM plan- -
ning is very similar to planning for other types of software and the
material in this section relies heavily on the work of other software
managerg(Brooks (1975), Metzger (1973).

ITI. SAS PROGRAMMING FOR RDM
1. Overview of SAS Processing:

In spite of the name, 'Statistical Analysis System', SAS is really

a data processing language with extensive statistical analysis facilities.

SAS is different from most other programming languages such as Fortran and

PL/I. One difference is that there are basically two types of SAS 'programs'.
One type isnamed a "DATA Step" because it begins with a SAS DATA statement

and is specifically oriented to creating a new "SAS dataset" (a dataset in

a special format). The other type is called a "PROC STEP" because it begins

with a SAS PROC (procedure) statement. Most PROC steps involve SAS subpro-

grams to perform some type of statistical computations. Since this is a text

about data management, the principal interest will be in DATA steps.

A DATA Step contains a program for inputting one or more datasets and
outputting (usually) a SAS dataset. The program statements superficially
appear much like PL/I statements. The same symbols are used, for the most
part, for numerical operators such as multiplication and division; and each
statement end with a semicolon (";"). But, the SAS DATA step progxwam is
structurally different.* The basic mode of operation is for SAS to input a
data record (an observation from a SAS dataset or one or more data cards
froman external dataset), execute the program statements once, then automat-
ically write the SAS '"observation" to the output SAS dataset. The SAS pro-
gramner is not required to write statements tc read -and-

* It is an interesting comment on "modern"” life that, as this is being
written the author is an airplane bound from Costa Rica to Guatemala, he is
thrilled by the fact that for the first time he cansimultaneocusly see both the
Atlantic and Pacific Oceans, from the right and left sides of t?:e plane,

respectively.

-5 -

write data records -- all this is performed semi-automatically by SAS.
The programmer can of course, take control of these functions to almost
any extent desired.

Since (input/output) is typically one of the most bothersome aspects
of programming and since SAS takes care of all I10 from and to SAS datasets,
SAS can be an extremely easy and efficient language for processing data once
those data are initially stored in SAS datasets. Moreover, SAS provides sub-
stantial facilities to incorporate data documentation directly in SAS datasets.
These and other features make SAS approximately an order of magnitude better
than treditional programming languages for managing research (and other) data.

1.1 OS Datasets, SAS Databases, and SAS Datasets

The basic purpose of this section is to eliminate, as quickly as
possible, confusion which arises from multiple uses of the work dataset.
In general terms, a dataset is any set of data. However, we will be con-
cermed with particular types of datasets.

An 0S dataset is a dataset which is accessed via the Operating System:

Examples include:

1. a deck of cards in a "SYSIN" dataset
//SYSIN DD #
deck of cards = OS dataset

2. A collection of records on a magnetic tape.
(//tapeset DD Disp = OLD, UNIT = TAPE, DSN = ABC.DEF)

3. A collection of records on a magnetic disk
(//DISKEX DD DISP = OLD, UNIT = DISK, SN = QRS,TUV)

4, A "SYSOUT" dataset is really a disk dataset. After the job
has completed execution the operating system copies each SYSOUT
dataset to the printer and then deletes the dataset from the disk,
(Example: //SYSPRINT DD SYSOUT = A,DCB=(RECFM=VBA, BLKSIZE = 200)

A dataset may contain data in any of several formats; we are primarily

Row

'observation'
fcase'
'record’

Data on n-th subject

interested in two formats:
"EBCDIC" ("Extended Binary Coded Decimal Interchange Code)
Cards are "punched", basically, in this format,
SYSOUT datasets are in EBCDIC
"Internal" or '"hexadecimal floating point" format,
used by SAS for its datasets.

The computer does not perform arithmetic on numbers stored in
EBCDIC code. 1In SAS, numbers must be converted from EBCDIC (or other
code) to "intermal hexadecimal floating point code" or "internal format"
before being processed as numbers. The conversion process is often rel-

atively expensive.

SAS converts data from IBCDIC to an internal format and then writes
the data onto disk (or tape) in a very special format.

A SAS Database is an OS dataset (on disk, sometimes on tape) written
by SAS in a special format. A SAS Database contains:
*One or more SAS Datasets (discussed below)
*Information about each SAS Pataset in the database. (We'll discuss
this later)
A SAS dataset consists of a data matrix plus special information on each
variable.

A standard data matrix (also called a "flat file") is an array in the
following format:

Colums = variables

Variable Variable Variable .«» 'bg:?.ff.able
Name Sex Age Height

Data on 2nd. subj.

etc . p— ~

-7 -

The SAS dataset contains one data matrix (plus info such as names
of variables, formats, etc.)

SAS creates (writes) a SAS dataset one entire observation at a
time (one row at a time). SAS reads a SAS dataset one observation at
a time (all variables at once).

Within a SAS dataset every observation has the same structure.
The variables are in the same order. A variable has the same length
{(number of bytes) used for storege throughout all observations. Only
data values differ from one observation to the next.

SAS can put several SAS datasets in one SAS database. The data-
sets may be completely different, i.e., they may have no particular re-
lationship to one another. Of course, they may also be closely related.

To refer to a SAS dataset within a SAS database one must tell SAS
two things:
*The information to locate the database (i.e., the OS dataset
containing the database). This is a ddname on a DD statement.
For example, in the following OS JCL statement,
//PERM DD DISP = OLD, UNIT = DISK,/DSN = ABC. DEF
"PERM" is the SAS Database name = ddname and
"ABC.DEF" is the 0S DSN (tells OS where to find the dataset).
*The name of the SAS dataset in the database: e.g., in the SAS
Statement
DATA PERM.MYDATA;
"PERM" is the database name (=ddname)
"MYLATA is the name of the SAS dataset within the database PERM.

(We will ignore the use of dataset specifications of the form DATA
MYDATA, i.e. those without a database name, because their use is poor program-

€ m‘?ﬁ&%e}s a special, temporary SAS database called WORK. WORK is deleted,
along with any SAS datasets stored in it, at the end of the job. WORK is useful

for storing temporary results. The name of a dataset in WORK is like names of
datasets in other databases, e.g.: WORK. MYDATA.

1.2 Overview of Processing.

SAS is a colleetion of a large nurber of computer programs and a
'supervisor' program. The supervisor calls the various other programs
as they are needed. A typical SAS job contains several "SAS steps".

A DATA statement or a PROC statemert is always the first statement of a
SAS Step. A SAS "Step":

Begins with a PROC or DATA statement and ends at the last statement, or the
last statement before the next PROC or DATA statement. This structure is
illustrated by the following:

//SYSIN DD*

DATA First step
Statements)

DATA } Second step
Statements

PROC Third step
)

DATA) Fourth step

4

In processing a SAS job, the supervisor:

1. Identifies the first step;

2. Calls the campiler to translate SAS statements into
computer-executable statements (mostly subroutine
calls);

3. Transfers control to the compiled program

4, If an error arises in the execution of the compiled
program, the supervisor takes control and decides

whether to: (1) terminate processing, or (2) con-
tinue processing with OBS = o (to be explained), or
(3) continue normal processing

5. (Normal processing): Print "NOTES" about the step

execution

6. (Normal processing): Identify the next step-and go
to 2 above.

A'DATA step' (step beginning with a DATA statement) typically involves
the creation of a new SAS dataset (within a specified SAS database). The
input data may come from an external (EBCDIC) 0S dataset or from one or
more SAS datasets in specified SAS datdases.

A "PROC step" (step beginning with a PROC statement) usually involves
analysis of a SAS dataset (which was created earlier). The result is usual-
ly printed output rather that new SAS datasets.

We will have many exceptions: some DATA steps are "report generating
programs' which produce a printout as the main output. Same PROCs, such as
PROC SORT, principally process data.

1.3 SAS Exccution of Data Steps

After campiling a program from a DATA step, the SAS supervisor executes
the program once for each observation in the data. After executing all the
statements in the program, SAS writes the observation, in 'internal format',
to the output SAS dataset. A "typical" data input phase program may be
diagremmed as follows:

DATA outputdsn;

Declaration, such as LABEL, FORMAT
INFILE
INPUT

L computation and logical statements

Typically, SAS would repeat the following sequence for each
input observation:
' a. Execute the INPUT statement{i nput the variables listed in

the statement, according to the specifications contained
in the statement.)

b. Execute the computation and logical statements.

c. At the 'bottom' or 'end' of the program SAS would write
out the observation (values of all the variables for this
observation) into the SAS dataset named in the DATA statement.

- 10 -

The whole sequence is repeated for each observation. As we will see
later, the programmer can change this sequence in many ways. However, unless
changed by the programmer, SAS uses the sequence indicated above.

2. The Data Input Phase (DIP)

The first computerized phase of data pfoCessing is the Data Input Phase,
which has the following objectives:)

1. To input data from an "external" (EBCDIC, card, or tape) OS dataset
and create a SAS dataset within a specified SAS database.

2. To perform preliminary checks for gross errors such as missing
cards, missing values, etc.

3. To create internal documentation of the dataset such as names of
variables, extended variable labels, formats of variables, etc.

The basic flowchart of a data input phase program, shown in Figure 2.1, is
very simple. Any complicated data manipulations are postponed until after
the data are stored in a SAS dataset. Because of the substantial amount of
documentation, SAS progrems for the data input phase are often long, but
straightforward.

2.1 A SAS Data Input Phase Example

An example of a SAS Data Input Phase program is shown in Figure 2.2.
The format of the input data, and a listing of a few cards are shown in Fig-
ure 2.3. In this example the data format is very simple: there is one card
per observation and the card format is fixed.

The example is fairly typical of most DIP SAS programs except for the
fact that most programs have more complicated data input. The following
paragraphs discuss Data Input Phase programming, and related SAS statements,
in teim_s of the example. Extension of the ideas to the more general case is
straightforward.

- 11 -

Job statement. The details of the JCL JOB statement have been omitted.
The JOB statement varies markedly from installation to installation. The
reader should obtain local JCL details from computer installation officials.

Figwe 2.1

The Simple Flowchart of a Data Input Phase -

l V Input deck
(data)

SAS Input Phase

Program
N
SAS Dataset ’ SAS Database
within the i S e’ (0S Tataset)
SAS Database — :

- 12 -

Figure 2.2 An example of a SAS DATA Input Phase Program

(The ‘data format is defined in Figure 2.3)

G @ h e ur W G R - = e - S - Can ——— ——————— e < a—— R ——

-~

// JOB

// EXEC SAS

// PERM DD DISP=OLD, UNIT=DISK, DSN=ABC.DEF.GHI
//*PERM WAS CREATED IN AN EARLIER JOB.

// TARJETAS DD*

// SYSIN DD*

TITLE EXAMPLE OF SAS DATA INPUT PHASE;

TITLE2 STORE PHYSICAL FITNESS DATA IN PERM.PFD79;

DATA PERM.PFD79 (LABEL~1979 PHYSICAL FITNESS DATA);
INFILE TARJETAS;

data cards

LENGTH NAME $ 20
SEX $ 1
HEIGHT
' WEIGHT '
LABEL HEIGHT=EIGHT OF SUBJECT IN CM

WEIGHT=SUBJECT WEIGHT IN KG
AGE=SUBJECT AGE IN YEARS

FORMAT DATEBORN
SURVDATE YYMMDDS ;
INPUT CARDTYPE $1-5
IDNUM 6 -9
NAME $11 - 30
SEX $32
HEIGHT $34 - 38
WEIGHT 40 - uy
46 DATEBORN YYMMDD6 .
53 SURVDATE YYMMDDS. ;
AGE = (SURVDATE-DATEBORN) /365.25;

PROC PRINT
‘ TITLE3 LISTING OF INPUT DATA;
PROC SORT; BY NAME;
PROC PRINT; ID NAME;
TITLE3 LISTING OF INPUT DATA SORTED BY NAME;

- 13-

Figure 2.2 PHYSICAL FITNESS DATA FORMAT (PFD79) and PARTIAL DATA LISTING

Format

Cols Description

1-3 '"PFD' Card type descriptor (memonic)

4 -5 '79! Year the data were collected

6 -8 OBS. Get data from staff, but make up names
6 -9 IDNUM Identification number of the subject
11 - 30 NAME Subject's name (Last, first, initial)
32 SEX Coded as 'M' or 'F';

34 - 38 HEIGHT Subject's height, in cm
4o - uy WEIGHT Subject's weight in Kg (xoxxX.x)
46 - 51 DATEBORN Subject's date of birth, (yymmdd)

53 - 58 SURVDATE Date on which survey was taken (yymmdd)

PERM DD Statement. This statement identifies the SAS database which will
contain the SAS dataset created by the program. As with the JOB statement,
DD statement details vary greatly from installation and the reader is again
directed to local computer officials to determine the mechanism for creat-
ing permanent disk datasets and local JCL for using them.

TARJETAS = LD Statement. The SYSIN dataset with ddname TARJETAS contains
the input data for the program. Data may also be placed inside the SAS pro-
gram, preceeded by a "'CARDS"; SAS statement. We feel it is good programming
practice to separate the data from the program, as has been done here. It
is often the case that one tests a program with a small deck of data cards
and, once testing is completed, a large card-image dataset on tape or disk
is input to the program. By separating the data from the program, the change
of input source from cards to tape or disk would involve changes to the DD
statement only; no SAS changes would be required. There are also other reasons
for keeping data and program in separate datasets.

- 14 -

SYSIN DD Statement: This JCL statement defines (preceeds) the dataset
containing the SAS program.

The LOG and PRINT Files. SAS programs typically produce two printed out-
put datasets called the LOG and PRINT files, respectively. The program
listing, NCTEs from the SAS supervisor, and SAS error messages are printed
in the LOG. Following the LOG, the PRINT file contains printed output pro-
duce by any PROCs which might be executed. The data input program may place
output in either file.

The TITLE and TITLE2 statements in the example specify titles to be
printed by SAS at the top of each page of the PRINT file (not the LOG
file). TITLE statement are discussed in SAS79 on page 18. The reader
should study that description of this point. Please sce the printed
output from the example (Figure 2.4) to observe the effect of the TITLE
statements. In addition to labelling the printed output the TITLE state-
ments form an important part of the documentation of the data processing
activities. COMMENT statements within the program also serve this docu-
mentation purpose.

2.2 DATA STATEMENT

The DATA statement in the example, which is typical of data input phase
DATA statements, performs the following functions:

1. It is the first statement of a DATA step.

2. It names the output SAS database ("PERM") and the output SAS dataset
("PED79'")

3. It provides certain other information about the output dataset, in
this case a dataset label, which contains a description of the data-
set longer than can be squeezed into an 8-character name.

In their most general form DATA statements may be quite complicated. The

most commonly used form, illustrated in the example, should be imitated by
the reader until more advanced forms have been discussed.

- 15 -

2.3. The INFILE statement

The INFILE statment specifies to the SAS supervisor the ddname of
the OS dataset containing the input data. (Note: including the data in
the program following a "CARDS"; statement - which is not recommended- is
an alternative to the use of the INFILE). INFILE statements may be quite
camplicated in some cases and SAS79, a reference manual, describes all the
possible options. Reading about INFILE in SAS79 now is not recommendeds -
wait until more advanced topics have been covered. For the present, simply
imitate the usage shown in the example, but feel free to create your own
ddnames (to replace "TARJHIAS").

2.4 Points of Programming Style:

The rules for creating SAS names, such as names of variables, names
of datasets, names of databases, ddnames, etc., are described on pages 7-8
of SAS79. The reader should review that description at this point.

Please do not use names which begin and end with underscores, such as
ALL , N, etc. SAS has a number of special names using this format. If
you use this format you might accidentally use a 'magic" word and create
some debugging problems.

Indenting. Note that all the statements in the example which follow
the DATA statement are indented. This type of program formatting is not
required by SAS but is highly recommended, as are other types of indention
illustrated in the Example. In this case, the indention shows at a glance
which statements are included in each SAS step of the program. Such inden-
tion therefore partially documents the structure of the program. Proper
program formatting is also a very useful debugging tool.

2.5 The LENGTH Statement
The LENGTH statement is a very important declaration statement which
specifies to the SAS compiler:
1. The type (numeric or character) of each variable listed in the
statement, and '
2. The length of each listed variable, that is the number of bytes
to be used for storing a value of the variable.

- 16 -

A variable is declared to be character if a '$' follows its name in
the LENGTH statement; any variable name in a LENGTH not followed by a 'S$'
is declared to be numeric.

Each variable has an associated length, in bytes. Numeric variables
must have at least two bytes; their maximum length is 8 bytes (approximately
15 decimal digits plus a 1-byte exponent). Character variables may be any
length from 1 byte to 200 bytes.

Default Length and Type of Variables. The SAS compiler determines both thebyte
and length of a variable at the first occurrenceof the name of the variable
in the program. If, at that point, there is no explicit information about the
type and/or length, SAS will use numeric as the default type and/or 8 bytes as
the default length. (See the description of the LENGTH statement in SAS79,
page 54).

In the example only four variables are explicitly declared as to type
and length in the LENGTH statement.

SAS will make DATEBORN and SURVDATE numeric when it encounters them in
the FORMAT statement because a numeric format (yymmdd8) is used. The lengths
will be the default, 8 bytes.

SAS will make CARDIYPE a character variable when it is encountered in the
INPUT statement because of the '$' following the name. SAS will determine CARD-
TYPE's length to be 5 bytes because that is the number of bytes in the input
field.

IDNUM will be declared numeric whcn its name is encountered in the INPUT
statement because there is no '$' or character format following the name. Regard-
less of the input field with, numeric variables have a default length of 8 bytes.
Thus, IDNUIM will have a lerght of 8 bytes.

The variable AGE will default to an 8-byte numeric variable when the com-
piler encounters its name in the LABEL statement.

The type and length of a variable are very important. Using too-long

- 17 -

lengths for variables in large datasets wastes storage space and can
increase processing time. And, although SAS permits a programmer to
mix character and numerical variables in the statement, SAS uses very
camplicated operational rules in such cases and the complications fre-
quently lead to difficult debugging problems.

We recommend that all variables in a data input program be declared
in LINGIH statements (and/or RETAIN statements, discussed later). In the
example we omitted variables from the LENGTH in order to.raise the issues

discussed above.
2.6 The LABEL Statement

Although the SAS names for variables are mnemonic and somewhat
descriptive there are limits to the amount of information one can crem
into an 8-bytes name. SAS provides for storing up to 40 bytes of ad-
ditional information about each variable in a '"variable label". Vari-
able labels are specified in one or more LABEL statements. (See SAS79,
page 112 for detailed specifications.) The information in a label needg
be specified only once. The information is stored in the dataset along
with the name of the variable, its length,etc. This information is
'carried along' through any future processing steps. Many of the analy-
sis PROCs print the label along with the name of the variable, when the
label is present. .

Preparing a descriptive label for every rnon-obvious variable is
good programming practice. Only an amateur would fail to take advantage
of this documentation feature. We omitted labels from some variables in
the example to make this point.

2.7 DATE Variables

One of the beautiful features of SAS79 is its ability to perform
date computations automatically. This feature is extremely useful in
processing research data, as in the example, where AGE is the difference
between two dates.

Digitized by GOOS[Q

- 18 -

In SAS79, a "DATE Variable" is simply a numeric variable whose value
represent the number of days (an integer) from 01 January 1960 to a given
date. Since a DATE variable is a numeric variable, special arithmetic is
not necessary. But SAS provides special functions for converting from exter-
nal representation of dates (e.g., 03Feb80) to the correct internal repre-
sentation, and back again.

The example has two DATE variables, DATEBORN and SURVDATE which are
input (see the INPUT statement) from 6-byte fields in the format yymmdd.
On input, SAS converts the 6 digits (e.g.800203 for 03Feb80) toa value
representing the number of days from 01Jan60 to the data base (e.g., to
03Feb80). Leap years and other calendar anomalies are correctly accounted
for.

The difference between two DATE variableg e.g., SURVDATE-NDATEBORN
is not a DATE value because it does not represent the number of days from
O1JAN60 to a specific date.

The difference of two DATE values is the number of days between the
dates. Thus, in the example, age in years is computed as AGE=(SURVDATE-
DATEBORN)/365.25. The extra 0.25 in the denominator represents the fact
that a year is (to 5 digits) actually 365.25 days long, creating the need
for leap years. We will present additional discussion of date variables
in a later section.

2.8 The FORMAT Statement

Since DATE variables are simply numeric variables with special inter-
pretation,'SAS will use a standard numeric default format to print them unless
directed otherwise. While it may be interesting to see a date represented as
the number of days since 01JAN60, humans find other date formats (e.g., 03FEB8O
800203, 80-02-03, and February 3, 1980) much easier to work with.

The FORMAT statement allows the SAS programmer to associate a specific
printing format with a variable. Then, when values of the variable are printed

-19 -

later, SAS will use this previously-specified format for converting from
internal to external form. (The programmer may override the format at a
later time). The format information is stored in the dataset along with
the name of the variable, its length, its label, etc. A format may be
associated with either type of SAS variable.

Formats are a topic to be studied in depth at a later point. Here
it is sufficient to say that one uses the FORMAT statement for this purpose
and that the example illustrates a straightforward usage. In the examples,
the output format specified for both DATEBORN and SURVDATE is of the form
yy-mm-dd, that is, 8 bytes including the hyphens.

2.9 The INPUT Statement

The INPUT statement is the heart of a Data Input Phase progream.
The INPUT statement specifies to SAS the name of each variable, the locat-
ion in the input record of the data for the variable, and special informa-
tion (the format) for converting from external format to intermal format.

This section contains only elementary information on INPUT state-
ments and formats. Another section is devoted to more extensive discussion
of the topic.

The INPUT statement in Figure 2.2 is typical of INPUT statements for
data with one fixed-format card per observation. The keyworl INPUT is follow-
ed by one 'specification' for each data field. In the example the specifi-
cations are placed on successive lines so that the statement has the apperan-
ce of a table, defining the input format of the data. SAS does not require
that the INPUT statement be arranged in this manner, but itis good program-
ming practice to do so.

The first field specification, "CARDIYPE § 1-5", has three parts,
the variable name (CARDTYPE), the "$" symbol, which means that the field is
a character string (not numeric) and the specification of the card colums
for the field, "1-5" denoting colums 1 through 5. (The "-" symbol is used

- 20 -

here as a hyphen rather than'a minus sign). For each card (and observation)
this specification will cause the character string in colums 1-5 of the data
card to be moved into the memory locations associated with CARDTYPE. In ad-
dition, leading blanks, as "WABCD" (where 'p' denotes the blank character),
will be deleted by shifting non-blank characters to the left and inserting
blanks on the right. That is, the input character string 'BABCD' would be
stored in the SAS dataset as 'ABCDB'. This process is called 'left justifi-
cation' of the character field. (This process can be overridden by using a
$CHARw. format, discussed on pages 36-37 of SAS79)

The second specification, "IDNUM6-9", is similar to the first except
that the omission of the "$" indicates that the field and the variable are
numeric. SAS will convert the value, punched in colums 6-9 to internal
numerical format. Leading and/or trailing blanks will be ignored. (This
is different from Fortran, for example, which treats trailing blanks as
zeroes.) If a decimal is punched in the field, the number will be con-
verted into the correct internal representation, including the fractional
part. "E-notation" is also converted properly: '12EY4' would be ccnverted
to the internal equivalent of 120000, for example.

The_fields for NAME, SEX, HEIGHT, and WEIGHT will be processed in &
menner similar to the processing of CARDIYPE and IDNUM.

2.10 Formats in INPUT Statements

Data fields other than straightforward numeric and character fields
require special additional information called 'format' for proper conversion
to intermal format. SAS provides a staggering variety of formats for such
special cases. (SAS79, chapter 5, pages 29-ul4).

The example INPUT statement in Figure 2.2 contains an example of the
use of specialized formats. The variables DATEBORN and SURVDATE are SAS date
variable (discussed above in section 2.7).In a data card, each of these varia-
bles occupies 6 colums in the format yymmdd, where yy represents the last
two digits of the year, mm represents the month number (01 for January,02 for

-21 -

February, etc.) and dd represents day number within month. An example
would be '800203' for 03Feb80. Unless instructed otherwise, SAS would
treat the data as numeric, having the value 800203. By directing SAS

to use a date format (YYMMDD6. in this case; see figure 2.2), the progrem -
mer instructs SAS to convert the 6-digit number into a date variable re-
presenting the number of days since 01JAN60. In the example, the value
'800203' read from the data card would be converted to 7338, the number

of days from 01JAN60 to O02FEBS8O.

2.11 PROC PRINT

The statement "PROC PRINL," in the example (Figure 2.2) executes
the SAS PRINT procedure. Notice that this SAS step has two statements,
'PROC PRINT"; and "TITLE3..' The TITLE3 stetement adds a third line to the
title information generated by TITLE statements in the first step.

The PRINT procedure produces a nicely formatted printout of the
contents of a SAS dataset. The name of the input dataset may be specified.
If it is omitted, the contents of the most recently created dataset (in this
job) will be printed.

The PRINT procedure is very simple to use; it is described on page
353 of SAS79. The reader should read the SAS79 description of PROC PRINT at
this point.

Note that the example contains another execution of PROC PRINT

after the data are sorted (PROC SORT). The second execution of PRINT uses
the ID statement, which is described in SAS79, page 353.

2.12 Sorting: First Look at PROC SORT

Sorting a SAS dataset is delightfully easy. The example (Figure
2.2) illustrates a simple execution of PROC SORT.

Generally, one would specify an input SAS dataset and a different
output SAS dataset for the SORT procedure, in the following form:

Digitized by GOOS[Q

- 22 -

PROC SORT DATA = input SAS dataset I

OUT = output SAS dataset: '
BY list; '

(1]

Note the use of the parameter DATA to specify an input dataset. This is
in contrast to the use of the statement DATA to specify: (1) the beginn-
ing of a DATA step and (2) the name of an omtput dataset. The parameter
DATA (in a PROC statement) is completely different from the DATA statement!

If one omits the DATA parameter from the FROC SORT statement (as
in the example), SAS will use for input the most recently created SAS data-
set in the current job.

If one omits the output dataset specification (OUT=) in the PROC
SORT statement, SAS will, in effect, make the output dataset name the same
as the input dataset name. If something causes PROC SORT to fail, or ter-
minate before completing output dataset, the input dataset will be unaffect-
ed.

A PROC SORT step must always include a BY statement, which speci-
fies the variables whose values are to be used to determine the ordering of
the observations. In the excnple, the data are sorted on the character var-
iable NAME, this orders the observations alphabetically, by values stored in
NAME.

The reader should now study the SAS 79 discussion of the SORT pro-
cedure, pages 373-375, except for the section "Sorting Large Datasets".

2.13 First Look at PROC CONTENTS

PROC CONTENTS is a SAS procedure which prints out information about
a SAS database and the SAS datasets contained in the database. This proce-
dure is an important tool, along with PROC DATASETS and PROC DELETE, for the

Digitized by GOOS[Q

- 23-

documentation and “management' of SAS databases. Although PROC CONTENTS
was not included in the example, it is included in the assignment. The
reader should read the SAS79 section on PROC CONTENTS at this point.

2.14 SUMMARY

We have presented, by way of an example, a "typical" Data Input
Phase program. The only major omission is that the example program does
not check for data errors. The SAS tools (statements) used for error
detection are discussed in subsequent sections.

Remember that the principal objective of a SAS Data Input Phase
program is to get the data into a SAS dataset. SAS datasets are easier
to process, modify, and manipulate that OS datasets.

If you are a newcomer to SAS and computer processing, much of
the material in this section may have been unfamiliar and some probably
did not make sense. Beginner or not, it is important to do the exercise in
the next section which may raise important questions to be directed to
your instructor or local SAS expert. Beginners should not be troubled
by their present state of confusion: do the exercise, re-read this
chapter, and then re-do the exercise. As noted in the introduction, learn-
ing data management is an iterative process.

2.15 Exercises/ Assignment:

1. Read each section of SAS79 referenced in Section 2. Note that in
some cases reading an entire chapter in SAS79 is not recommended (because
the chapter contains descriptions of advanced features not yet covered)

2. Creat an 0S dataset on disk to be used for later examples. You will
probably need assistance from the instructor or local SAS expert.

3. Obtain a copy of the data described in the example. (The format is
in figure 2.3) Make a SAS program to input and sort the data and store
the results in your SAS database. (Feel free to copy the program in Fi-
gure 2.2. You might wish to add labels for the ‘unlabelled variables).

Digitized by GOOS[(’,

- 24 -

Add a PROC CONTENTS step at the end of the program to print information
about all the datasets in you database.

Incidentally you should expect to make errors. Examine the
LOG section of your output carefully (especially the 'NOTES") to deter-
mine if the program has run properly.
3. Numerical Operators Expressions, Statements, and Functions

One of the very nice features of SAS is the ease with which
new variables can be created from old ones. An almost unlimited variety
of numerical trensformations and combinations can be made with numerical
expressions, statements, and functions.

3.1 Numerical Operators, Assignment Statements and Expressions

A typical numerical statement is in the format.
variable = expression;
where variable is the name of numerical varisble and expression is a SAS
numerical expression.

SAS numerical expressions are very similar to numerical expressions
in other computing languages such as Fortran and PL/1. We assume the reader
has some familiarity with such expressions in other languages.

" The SAS numerical operators (defined in SAS79, Appendix 5) are:

Digitized by GOOS[Q

- 25 -

| Operator Name SAS Code Math

k& Exponentiation A**B A

* Multiplication C*D CD

/ Division E/F E+F

+ Addition G+H G+H

- Subtraction 1-J 1-J |
>< Minimum K><L Min (K,L)
L> Maxcimam M{ON Max (M,N)

One combines constants, variables, and operators to form expressions.
In the preceeding example we had the statement.

AGE = (SURVDATE-DATEBORN)/365.25;
which converts age, in days, to age, in years.

Numeric constants, such as 365.25, are generally coded just as they
appear. For special forms (E-notation, hexadecimal), see Appendix 5 of SAS79.

"Operator Precedence' One can use parentheses to define the order of
several operations, as in the expression above. In some cases one also uses
the fact that, if parentheses do not define the order of execution of operations,

(a) Operators with high precedence are executed before operators

with low precedence.
(b) Operators with equal precedence are executed in left-to-right
order, except in the first group. (See Appendix 5. If in doult,
use parentheses) .
The operator precedence table is:

Digitized by GOOS[G

- 26 -

Highest: %% prefix -, prefixt, »{ ,{?
x /
comparison operators (¢, £{=, etc.
AND

Lowest: OR

Thus, for example, one could code

a =¢c + e +h + i
f+g J

ABC/D+E/(F+G) + (H+I)/J

Here, both sets of parentheses are required. Similary

x=y2+z2 could be coded

as - x SQRT (Y™ + Z % 2)
or X SQRT (Y&# 2 + Z #** 2)
or X (% 247 *k 2) *% Q.5

In this example, the first code is preferable because Y #* 2 is evaluated
as BExp (2% log (Y)). Generally, A ** B is evaluated as Exp (B ¥ Log (A)).
This expression fails and creates error messages if A0, or Y<0, even

though Y2 is perfectly well defined for Y0. Thus, low order integer

powers, as Y2, Y3, Yu,'are best coded as repeat multiplication: Y*Y, Y*Y*Y,

etc.

3.2 Arithmetic Functions

SAS provides a wide variety of numerical functions, described
in Appendix 1 of SAS79. The Arithmetic functions are:

ABS - Absolute value
CEIL - Smallest integer >» argument

FLOOR - ' Largest integer { argument

Digitized by GOOS[G

- 27 -

INT - Truncation of argument to
integer

MOD - Mod (a, b) = a mod b

SQRT - Square root of argument

ROUND - Rounds to nearest integer

SIGN -

= + 1., depending sign of
argumernt

(SAS also lists MIN and MAX among the arithmetic functions,) but these are

really statistical functions.)

Trigonomet—icand Hyperbolic Functions.SAS provides all the usual trigonometric
and hyperbolic functions: SIN, COS, TAN, ARCOS (are cosine), ARSIN (arc sine),
ARTAN, COSH, SINH, TANH.

Math Functions. SAS provides a useful collection of math and math-stat
functions: L0G, L0G10 and LOG2 .logarithm to base e, 10, and 2, respectively.

GAMMA, LGAMMA Garmma function and log gamma function, res-
pectively.

GAMINV Inverse gamma function

EXP Exponertiation: eX.

PROBNORM, PROBCHI, PROBT,

PROBF, PROBGAM Probabilities computed from the indicated

distribution (normal, chi-square, t, F, Gamma)

Random Number Generators - SAS provides UNIFORM and NORMAL to generate random
mumbers from the standard uniform (0, 1) and standard normal, N(0,1), dis-
tributions.

3.3 Statistical Functions. SAS provides 15 functions for computing statis-
tics from the arguments. These functions are distinctive in that:

- - The number of arguments is not fixed - any number of arguments
may be used.

For example:
X = MEAN (Y1, Y2, Y3); Y=MEAN (Y1, Y2, Y3, Yu);

- Any argument which has a missing value is ignored in the
computations

Digitized by GOOS[G

- 28 -

(except the functions N, NMISS).

- A special form of argument can be used for long lists of
variables.

The statistical functions are listed and defined on page 4u4u, of SAS79.
They are: N, NMISS, SUM, MEAN, MIN, MAX, RANGE, etc.
In "standard use", the arguments are separated by commas:
X = MIN (3, X2, X3, X7);
For these statistical functions only, lists of variables whose names
end in numbers can be written in the form |

Y = MAX (OF X1 - X100)
which has the same effect as writing out all of X1, X2,... X100, separated
by camas.

As noted above, these statistical functions ignore missing values in
the computations, except for the functions N and NMISS. N counts the number
of arguments with nonmissing values and N counts the number of arguments
with missing values.

3.4 Missing Values:

Generally, on input, if a data field for a numeric variable is blank,
SAS will store a special "missing value"” for the variable in that observa-
tion. Normally a numeric value is stored in an 8-byte hexadecimal float-
ing point format as follows:

1 2 3
]|

IW

BYTE:

4 &5 6 7 8

7 byte
Sign (first bit) and base-16 exponent (7 bites)

Digitized by GOOS[G

- 29 -

If the data value is zero, SAS stores a zero mantissa, a + sign, and an
exponent value of 0 (for 16°). " If the data value is missing, SAS stores
a zero mantissa and the character '¥" (a blank character, hex 40) in the
sign/exponent byte. In later processing, before performing arithmetic
operations, SAS checks each numeric value to see if it is a "missing
value" If 80, the result of the operation is a missing value.

"

A programmer can code missing values with the character ".", in &

SASnumeric expression for example: X = .3

=x will place a missing value in X.

SAS actually permits 28 types of missing values, which may be coded
as . "."’ ". ﬂ’ “.A"’”.B"’ ".C"’ ooy ".Z". For, "."’ SAS StOPES a "E"
(blank character) in the first byte; for . " SAS stores an " " character;
for ".A" through ".Z" SAS stores the character "A", ..., "Z" in the first
byte.

The missing value "." is czlled the "simple missing value". It is
normally placed in a numeric variable when the input field is blank.

The other missing values are called "special missing values'". One
can use these in program statements, as X = .A; these can also be generat-
ed by SAS by use of the MISSING statement.

All of this is described nicely in chapter 6, of SAS79 Missing Values,
which should be read at this point.

The RETAIN Statement:

In "normal" operation, before beginning initial processing, and after
outputting an observation to a SAS dataset, SAS sets all numeric variables
to simple missing values (".") and all charecter variables to blanks.

In this mode of operation, the programmer cannot access any information
from the preceeding observation. For example, suppose one wishes to count the
number of observations. A programmer cxperienced in FORTRAN or PL/I might

Digitized by GOOS[G

- 30 -

try the following program:

This program will not work. SAS will not accept the 'Ne0"; statement
outside a DATA step. Inside the DATA step, the result of the ™eN + 13 "
statement (assuming N is not in the INPUT list) would be to set N to a mis-
sing value, because N would be set to a missing value before each execution
of the statements in the progrem.

The RETAIN statement allows a programmer to specify variables which
will not be set to missing or blank values before execution of the state-
ments in the step. The programmer can also specify an initial value (cons-
tant) other than missing (".") for a variable with the RETAIN statement.

The example above could be accamplished by the following progrem:

DATA name;

RETAIN N (0);
INPUT list;

N = N+1;

(other statements)

Here, N is specified as a variable whose value will notbe changed after
SAS outputs each observation. Moreover, N is initially set to zero. Thus,
the "N= N+1;" statement following the INPUT statement effectively counts the

Digitized by GOOS[G

- 31 -

number of times the INPUT is executed.

The RETAIN statement is described on pages 107-109 of SAS79, which
should be read at this point.

The reader should be aware that SAS provides other means of accam-
plishing the counting of records (as above) and similar tasks. ("Sum'
statements, p. 103, may be used, for example, or the autamatic variable
N, which serves a similar purpose). Sections Oof SAS79 describing these
features should be read when the need to use them arises.

4, Character Manipulation

SAS offers somewhat limited, but very useful facilities for storing
and manipulating character variables, i. e., variables whose values are
strings of EBCDIC character rather than numbers to be used for computation.
4.1. Charecter Variables

SAS has two types of variables: (1) numeric variables, whose values
are stored in a special internal format suitable for numerical computation,
and (2) character variables, whose values have the same internal and ex-
ternal format (EBCDIE). Character values, or ‘strings"”, cannot be used
directly for computation. If the character string contains a number in
EBCDIC format, i}~ string may be converted to internmal numeric format for
use in numerical computations. Or, the value may be maintained in EBCDIC
format and manipulated as a character string.

Each character in a character string requires one byte for storage.
A blank character ('¥') is simply one of the available characters and there-
fore also requires one byte for storage. (We shall use 'B' to denote the
blank character).

A SAS character variable has a fixed length, which is the number of
bytes available for storing values of the variable.

Determining the Type and Length of Character Variables:

In a DATA ... INPUT step the SAS compiler determines the type of a
variable (character or numeric) and the length (number of bytes allocated
for string values) from the first appearance of the variable's name in the

.Dv;gitized:by G 008 IG

- 32 -

SAS program. If a variable is not specified to be a character variable,
SAS will assume the variable is numeric.

SAS will try to determine the intended length of a character va-
riable from the available information. If the first appearance of the
character variable is in an INPUT statement, SAS will determine the length
from this statement. For example, in the previous example creating the
PFD79 dataset, the variable name CARDIYPE first appears in the statement.

INPUT CARDTYPE $ 1-2 etc.

The "$" indicates that CARDIYPE is to be a character variable.
SAS determines fram the specified input colums (1-2) that the
variable is two bytes long.

SAS may also determine the type and length of a character variable
from its first appearance in an assignment statement. If the INPUT state-
ment above were followed by

A = CARDTYPE;

1

Then SAS would define A as a character variable with the same
length as CARDTYPE.

The programmer can specify the type and length of charaecter (and
numeric) variables in LENCTH statements as described in a preceeding sec-
tion. A LINGTH statement is a declaration, or definitions and is not
"executable". Once the type and length of a variable are established
they cannot easily be changed. The LENGTH statement is described on page
54 of the SAS79 manual and is illustrated in the PFD79 example.

The LENGTH statement must follow the DATA statement and preceed
any other statements containing the names of the variables in the LENGTH
statement.

Digitized by GOOS[Q

- 33 -

It is good programming practice to explicitly specify the type
and length of character variables in LENGIH statements.

4,2, "Missing Values" for characters Variables. Since character variables
cannot participate directly in numeric computations, there is no "missing
value" problem for character variables. Any valid EBCDIC character in the
input data may be input to a charecter variable. A blank input field results
in the character variable containing blank characters.

4.3, Conversion Between Character and Numeric Values:

The SAS compiler will attempt an automatic conversion of a charac-
ter value to a numeric value, or vice versa, when character and numeric
values are mixed in the same statement. For example, if X is a numeric
variable and C is a character variable of length 8, the statement,

C = X
would be campiled so that the numeric value in X would be converted to a
12-byte EBCDIC character string (using the BEST12. format), the rightmost
4 characters would be deleted, and the leftmost 8 characters would be stored
in C. (See page 11 of the SAS79 manual for more details). This imay or

may not produce the result the prograrmer wants.

The statement,
X=C
would be campiled so that SAS would attempt to convert the 8 EBCDIC charac-
ters in C to internal numeric format. If the conversion is successful, the
resulting number is stored in X. If the conversicn is not successful (e. g.,
if C = 'ABCDEF&H'), a simple missing value (.) is placed in X.

SAS will attempt conversions wherever needed. For example, using
C above, the statement "X = SQRT (C);" would have essentially the same result
as the two statements,
TEMP = C;
X = SQRT (TEMP);
where TEMP is a numeric variable.

Digitized by GOOS[Q

- 34 -

The two character functions PUT and INPUT (SAS79, page 439) are
available to the programmer to perform explicit transformations between
numeric and character values. One can reliably obtain the required results
using these functions. Letting SAS perform the conversions implicitly is
' poor programming practice.

4.4 Comparison of Character Values

The SAS comparison operators (<, <=, =, =2,77, > =)
can be used to compare character values. The result of such a camparison
is always a "logical" value (i.e., a numerical value with 1 representing
"TRUE" and a0 representing "FALSE").
(Camparison o. character values is discussed in detail in Appendix 5 of
SAS79, pages 458-459).

If two character values of different lengths are to be compared,
SAS will move the shorter value to a temporary storage location, add
blanks to the right until the temporary is the same length as the other
value, and then make the comparison between two strings of equal length.

For purposes of determining the ordering of characters (e.g., is

'$'less than "$" ?) SAS uses the standard IBM 360/370 "collating sequence,
The order of all the common characters is shown on page 458 of SAS79.

In this sequence, the groups of "printable" characters are:

(blank) ¢ special characters { letters & numemals

The special characters are such as: .= { + etc.

The letters are AL B ¢ ¢ Z ard the numerals (EBCDIC codes
for digits) are 0 {12 ¢ ...489.
4.5 Concatenation

The only SAS operator which "combines" two character values to

produce another character value is the concatenation operator,|!, describ-
ed on page 459 of SAS79. (The reader should study the description in

SAS79 before proceeding).

Digitized by GOOS[G

- 35 -

Concatenating names may be a bit tricky because the || operator trims
(deletes) blanks before concatenating. For example, the following code,

LASTNAME = 'PAEZB';
FIRGIN = 'GILBERTO®' ;
NAME = LASTNAME:\! FIRSTN;

would produce the same result as

NAME = 'PAEZGILBERTO';
One way to solve the problem is to insert a blank or comma:
NAME = LASTNAME |V 'B' |! FIRSIN;
¢ NAME - LASTNAME 11 '% ' |1 FIRSIN;

4.6 Character Functions
The functions provided by SAS for manipulating character values

are:
SUBSTR to extract a substring;

INPUT to explicitly transform an EBCDIC string

into internal format, using a SAS format;

PUT to explicitly transform an internal value

(nureric or character string format, using
a SAS format).

LENGTH to permit the program to determine the length
of a character string, omitting blanks on the
right;

REVERSE to reverse the order of characters in a string.

The technical details of these functions are given on page 439 of
SAS79.

4.7 Character Formats
SAS provides for character formats, for use in INPUT, PUT, and related
statements (and the INPUT and PUT functions) for transforming characters
from external storage to or from internal storage. The formats, $w.,
$CHARw. , $HEXw., and $VARYINGw., are described on pages 36-37 of SAS79.
There is very little difference between internal and external storage of

Digitized by GOOS[Q

- 36 -

character strings. The principal difference is in the handling of lead-
ing blanks and the length.

If an input string is too long for the character variable, the
string is truncated on the right, to fit. (The rightmost characters
are deleted until the string is short enough to fit). If an input string
is shorter than the character variable, the string is padded on the right
with blanks. (Blanks are added on the right until the string is the same
length as the variable.)

The "$w! format causes leading blanks to be deleted from a string
on input, the first character of the stored result will be non-black un-
less the entire value is blank. The "$CHARw." format does not delete
leading blanks on input.

The "$VARYING." format is very useful for "free format" input
character data. The usc of this format will be illustrated subsequently.
5. Llogic Statements: IF, THEN, ELSE, GO TO, etc.

5.1 logical (Boolean) values, variables and expressions

Logical (Boolean) variables take only two possible values, TRUE
and FALSE. For convenience, SAS (and many other programming languages)
code these values numerically as 1 for TRUE, O for FALSE. Thus, in SAS,
a "logical variable" is really just a numeric variable; the programmer
forces the variable to be Boolean by restricting it to the values 0 and 1.

Logical (Boolean) expressions are built up from the Boolean opera-
tors, AND (£), OR (1), and MOT (£), from Boolean values and variables, and
from comparisons. (See SAS79, Appendix 5, for more details).

Comparisons are expressions of the form: display (variable (or
value)) (comparison operator) (variable (or value), as for example,
(A B) AND NAME = 'JONES'

In SAS, comparisons always produce a result of 0 or 1.
Comparisons may be combined by Boolean operators to produce Boolean
expressions as, for example,

(A B) AND (NAME = 'JONES')

Parentheses are used here to make the order of evaluation explicit. The

value of a comparison or Boolean expression may be sorted in a numeric variable:
¥=(A B) £ (NAME = 'JONES');:

Digitized by GOOS[G

- 37 -

One can also perform nureric computations on Boolean values:

NM=(X1L 5) + (X2 5) + (X3 5) + Xu 5);
Here, NUM is the number of variables (among X1, X2, X3, X4) which exceed 5.

The principal use of Boolean expressions is in IF statements, dis-
cussed below.

5.2 Statement Labels and @0 TO

Within each execution of a SAS step, the SAS statements are "normal-
ly" executed in the order in which they appear in the program. The program-
mer uses statement labels and the G0 TO statement to execute the statements
in a different order.

A statement label is a unique SAS name at the beginning of a state-
ment, followed by a colon as, for example:
TOP: X= X+1;
The label, TOP, identifies the statement.
The "GO TO label'. Statement transfers control to the statement
indicated by label. This may be a "forward" or "backward" jump as is il-
lustrated by the program segment:

STEPA: A =B +C
GO TO STEP?2;
STEP1: A =D+ E;
G0 TO STEP A;
STEP2: Y = SQRT (2):

Here, the first GO TO jumps forward, the second jumps back. More details
on statement labels and G0 TO are given on pages 113-114 of SAS79.

Digitized by GOOS[Q

- 38 -

5.3 DO-END Groups.

Sometimes, as in IF statements discussed below, it is convenient
to treat a group of statements as a block, almost as one statement. Such
a block of statements as specified with an initial '"DO;" statement and a
terminal "END," statement as, for example:

TOP: DO; !
X = X+ ; !
Z = SQRT (X); :
T=X% 7 |
END, l

(Indenting the statements in a "DO group” is not reguired by SAS but is
good programming practice). SAS treats all the statements in a DO-END
group as a single block, as will be seen in the next section.

5.4 TIF-THEN and IF-THEN-ELSE

The most important “control" statements in SAS are the IF state-
ments. A complete explanation of IF statements requires several chapters
of a book on programming, much more than the few paragraphs available here.
(A very brief description of IF-THEN-ELSE statements is found on page 113
of SAS79. The reader should read that description at this point ')

The first principal use of IF statements in RDM is for detecting
data errors, such as checking if a variable's values are in a reasonable

range:

FRR = 0;
IF N\GE € = 0 OR AGFD» = 80
THEN 1DO;
PUT /'AGE OUT OF RANGE';
FRR = 1;
| END;

Digitized by GOOS[Q

- 39 -

or if a variable has a valid value:

IF SEX * NE 'M'¢ SEX NE 'F'

THEN DO '

PUT /'INVALID VALUE FOR SEX'; |

ERR = 1 !
| |

The other primary use is to selectively execute certain state-
ments, as:

IF ERR TEEN LIST; l

This statement, following the ones above, would print in the LOG
the values of all the variables when an error had been discovered (when
ERR = 1).

Note that the types of statements which may follow THEN or ELSE
is limited (SAS79, page 113); in particular,and IF may not follow THEN
or ELSE. A DO can be used to solve the problem:

ERR = O;
IF SEX = 'M!
THEN DO;

IF FEIGHT » 210 THEN ERR = 1;
END;
ELSE DO;

IF HEIGHT » 190 THEN ERR = 1;
END;

-

Digitized by GOOS[Q

- 40 -

Note the code above could be abbreviated by using ERR as a Boolean variable:

ERR = 0
IF SEX = 'M' THEN ERR = ERR or HEIGHT>210;
| ELSE ERR = ERR or HEIGHT>190,

5.5 ERROR, STOP and ABORT

Sometimes error conditions arise and the programmer wants his program
to signal the condition and/or terminate processing. The ERROR, STOP and
ABORT statements provide three levels of action for such conditions. These
statements are described on pages 106-107 of SAS79.

Briefly, "ERROR;" or "ERROR message;" causes the system error indi-
catoe for the current observation, _FERROR _, to be set to '8' If a "message" 1.
is present, it is printed. Upon completion of processing of the observation,
if _ERROR_ = 1, the values of all the variables are printed in the LOG (as
if LIST were executed). -

Execution of STOP terminates execution of the current SAS step. SAS
will go to the next SAS step (DATA or PROC) and attempt to continue.

Execution of ABORT terminates SAS processing; control is returned
to the operating system. ABORT also permits the user to ABEND the job with
a user completion code. (See SAS79 page 107 for details).

6. Arrays and Loops

6.1. Arrmays
In SAS79, an array is a collection of variables to be processed

together in DATA steps. The advantage of an array is that a single name
(the name of the array) can be used to represent any variable in the array.

Digitized by GOOS[Q

- 31 -

All the variables in an array must be the same type (character or
numeric). The lengths of the variables may vary.

An array is defined in the ARRAY statement (a declaration, a non-
executable statement), which has the general form (SAS79, pages 12-13):
ARRAY array name (index name) array elements;
The example in SAS79 is
ARRAY Q (I) Q1-Q20;
The name of the array is Q (a unique name within the DATA step).
The array index is I. The variables Q1, Q2, ..., Q20 are elements of the
array.
Whenever the array index, I, has a value, 1 £ =TI {= 20, the
variable name Q refers to the I-th element of the array. For example,
when I=1, Q is the same as Q1; when I=2, Q is the same as 02, etc.

Implementation:

When the SAS compiler encounters an ARRAY statement, it prepares a
list of the variables in the array and marks the array name as a special
type of varidble. When the array name is encountered in a subsequent state-
ment the compiler creates special code. When this code is executed, it
determines the value of the index variable ("I" in the example), finds the
address of the indexed element (variable), and uses this address as the
effective address. (This is called a "pointer implementation" because the
array index is really a pointer variable.)

The implementation strongly resembles the use of PL/I pointer va-
riables and is very different from the implementation of arrays in FORTRAN
or PL/I.

Arrays have a wide variety of uses in RDM programming, some of which
will be illustrated in a subsequent section.

6.2 Variable Lists

SAS79 programs typically contain a number of lists of names of va-
riables, or "variable lists". SAS provides several methods of abbreviat-
ing certain types of variable lists. (See SAS79, page 9).

Digitized by GOOS[Q

- 42 -

The most elementary form applies to ‘numbered names', variable
names of the form "aaaaannn", where "a" represents a letter (or under-
score) and "nnn" represents a number with no leading zeroces. Examples
(from SAS79) include

Q2 Q3 Q4 Q5

SEXQd SEX2 SEX3
etc. A list such as the one above can be abbreviated in the form

aaaaannn - aaaaammm
where "mmm" is a number larger than nnn. The lists above became
Q2 - Q5 and SEX1 - SEX3
All of the implied intermediate variables must exist, e.g., in Q2 - Q5, Q3
and Q4 must exist.

SAS also permits specification of "ranges of variables", but this
technique requires exact knowledge of the order in which SAS is storing va-
riables in an observation. This technique is not recommended for profes-
sional-quality programs because subsequent modification of one part of a
program, which alters the order in which variables are stored, will probably
introduce errors into the statement using a range of variables specification.

The abbreviation NUMERIC as a variable list is translated to a list
including all the numeric variables defined at that spot in the program.
The abbreviations _CHARACTER ,and _ALL produce similar results for character
variables and all (numeric and character) variables defined at that spot
in the program.

Be careful with variable lists. If in doubt, make an exact list
containing each desired name. If a list is used repeatedly, a MACRO can
save work.

Variable lists have an obvious application in ARRAY statements.

6.3 DO Loops.

DO loops are among the most powerful of all control statements.
Loops, together with arrays, provide programming capabilities which are
extremely difficult to program with other combinations of statements.

- 43 -

(DO statements are described on pages 115-116 of SAS79).

Iterative DO. The iterative DO statement has one of two general

forms,
DO index
DO index

start TC stop;
start TO stop BY increment;

For example, consider the following pert of a program, in which
X1, X2, ..., X100 are assumed to have values (by INPUT, or otherwise)
and it is desired to count the number of Xi which have abosolute value
greater than 0.5.

ARRAY X (I) X1 - X100 l
NUM = 0, ’
DO I =1 TO 100; !
IF ABS (X) > 0.5 THEN NUM = NUM + 1; l

]

| END;

| -

The IF statement will be executed 100 times; on each execution X will
represent a successive variable, X1, X2, ..., X100.

The SAS79 DO is very similar to the PL/I DO; the reader should
examine the documentation in SAS79 (pages 115-116).

DO OVER. The array statement is matched with the iterative DO
in the DO OVER statement, described on page 116 of SAS79. This form of the
DO is especially useful for general programs or "subprograms" for RDM
problems.

7. Macros and Subroutines

SAS provides Macro ~tatements and subroutine capabilities
to let the programmer re-use groups of program statements.
7.1 Macros

The purpose of a MACRO statement is to modify the actual SAS program
by repeatedly inserting program text. A typical use occurs when a programmer

- 44 -

has a long list of variables which must be used in several places in a

program and which cannot be abbreviated by one of the techniques discusged

eaplier We will illustrate with a short list of variables to redwe
the size of the example shown in Figure 2.6.

Figure 2.6 Example of the Use of MACRO statements.

//SYSIN DD *

MACRO IDLIST PROVINCE CANTON DISTRICT IDNUM %
MACRO VARLIST IDLIST FIELDNUM

CROP ALTTTUDE SOILTYPE

RAIN_JAN RAIN FEB RAIN MAR $% l
DATA DATABASE.FARM;

{mims DATA Step Sta'tements}

PROC PRINT,

ID IDLIST,

VAR VARLIST,

TITLE INPUT DATA IN ORIGINAL ORDER;
PROC SORT; By IDLIST;
PROC PRINT;

ID IDLIST;

VAR VARLIST

TITLE INPUT DATA SORTED BY IDLIST;

Digitized by GOOS[G

- 45 -

Figure 2.7. Effect of the MACRO statements in Figure 2.6.

The First PROC PRINT Step After MACRO Text Substitution
Becames as Follows:

PROC PRINT:

ID PROVINCE CANTON DISTRICT IDNUM;

VAR PROVINCE CANTON DISTRICT IDNUM FIELDNUM
CROP ALTTTUDE SOILTYPE
RAIN JAN RAIN TTE RAIN VAR;

TITLE INPUT DATA IN ORIGINAL ORDER;

(the remaining substitutions are left as exercises).

When the SAS campiler encounters the name of a MACRO (VARLIST or
IDLIST in the example), it replaces the MACRO name by the macro text,
i. e., by all the characters between the MACRO name and the "$%" symbol.
(See SAS79, page 12, for a brief description of MACROs.)

In the present example, the first PROC PRINT step of Figure 2.6
would be modified by the compiler to appear as in the first section of
Figure 2.7. The words VARLIST and IDLIST have been replaced by the text
of the MACROs. Note how the text of IDLIST is substituted in VARLIST
as a part of the 'expansion'.

SAS does not automatically print the program text after substitution.
One can specify that MACRO expansions are to be printed by placing an
"OPTIONS MACROGEN;" statement in any place prior to the invocation of the
option. (See SAS79, p.u46).

Digitized by GOOS[(’,

- 46 -

Excercise:
Complete Figure 2.7. That is, write out the complete expansion of
the text from Figure 2.6 as it would be produced by SAS.

7.2 Subroutines

SAS MACRO statements permit the programmer to insert the same text
multiple times in his program. If the MACRO contains several statements
(without statement labels) the original progrem text will be modified by
the compiler so that, in effect, the same statements will be inserted at
~ different places and possibly executed several times.

A subroutine, or subprogram, is a set of statements which appear only
once in a SAS step but which may be executed several times from different
places in the step. The SQRT function is an example of a built-in SAS sub-
routine. When the compiler encounters a SQRT in the program, it produces
code to transfer control to the SORT subroutine call.

In SAS79, one uses LINK and RETURN statements to program subroutines.
(See SAS79, page 114, for a brief description of these statements.) As a
simple illustration, suppose that certain complicated computations are to
be performed at several places in a program, involving a variable X, a mean
M, and a standard deviation S. The code shown in Figure 2.8 could be used
for this purpose.

The first G0 TO is necessary so that the subroutine will not be exec-
uted at the beginning of processing each observation.

The "name" of the subroutine is COMP, which is just the label of the
first statement in the subroutine. Note the subroutine is called by a "LINK
OOMP;" statement, below.

Before a "LINK COMP:" statement, appropriate values are placed in X,
M, and S, the subroutine's input arguments. After LINMng , the result is

Digitized by GOOS[G

- 47 -

Figure 2.8. An example of a Subroutine.

//SYSIN DD #*
DATA A.B.;
GO TO NEXT: * SKIP AROUND SUBROUTINE;
* SUBPOUTINE TO COMPUTE COMPLICATED FUNCTION OF VARIABLE X,
MEAN M, AND STD.DEV.SE. THE RESULT IS RETURNED IN RESULT,;
COMP: '
Statement to perform camputations

RESULT = ;
RETURN; * END OF SUBROUTINE COMP;
NEXT:
LENGTH
INPUT etc.
¥ = AGE; M = MEANAGE; S = SD-AGE
LINK COMP;

AGE-F = RESULT;
X = WEIGHT; M-MFAI-WT; S-SD-AGE:
LINK COMP;
WEIGHT - F = RESULT;

Digitized by GOOS[G

- 48 -

moved from RESULT an appropriate variable. (AGE. F in the first example).

Note that the statements in COMP have access to all current varia-
bles. Unless dropped, any variables used in COMP will be output. SAS
subroutines are "internal subroutines", unlike Fortran subroutines, for
example.

A subroutine in one SAS ster is not available to other SAS steps.
If it will be needed in several SAS steps, it should be made into a MACRO

and inserted into each step by MACRO substitution. The subroutine is in-
side the MACRO:

MACRO COMP-MAC
COMP.
RETURN; %

In each step where it is included, one would still use "LINK COMP;"
to involve the subroutine.

7.3 Other RETURNs

Note there is another important use of the RETURN statement, not
associated with subroutines. See SAS79, page 114, for a description.

Digitized by GOOS[G

II.

- 49 -

8. The INPUT Statement and Related Topics

-

(This section has been temporarily omitted).

9. Elementary SAS File Processing

The basic purpose of the Data Input Phase is to produce a

SAS- dataset which can then be manipulated with relative ease. Actually,
one does not usually modify a SAS dataset which has already been created.
"Manipulation" in a DATA step usually inwolves a repetition of the follow-
ing steps:
Read an observation from an input SAS dataset.
b. Modify the observation. (Modify, add and/or drop varia-

bles; possibly delete the observation).
c. Write the modified observation to the output SAS dataset.

iy

The process is repeated until all the observations fram the input data-
set have been processed.

Virtually all SAS data processing is some variation on this method.
The following paragraphs discuss progremming the basic method and same
variations.
9.1 Basic Processing: DATA and SET

The most basic form of SAS dataset processing is described in the
paragraphs above. A SAS step for this processing has the form:

DATA outputdsn;:

| SET inputdsn;

: statements to compute new variables,
drop variables, and/or

delete observations

Where: outputdsn is the dataset name of the output SAS dataset inputdsn
' is the dataset name of the input SAS dataset.

Digitized by GOOS[G

- 50 -

One can optionally add the parameter END = varname to the SET state-
ment, where varname is the name of a variable which the SAS supervisor
will set to 0 for each input observation except the last and to 1 when
the last observation is input.

(The SET statement is described in detail on pages 78-79 of SAS79.)

The statements following the SET statement are executed for each
input observation.

Concatenating Datasets. Two or more input datasets may be concate-
nated by listing them, in order, in the SET statement. The general form
is:

: DATA outputdsn;

! SET inputdsni ((IN = vart)]
! inputdsn2 [(IN = var2)
i inputdsnk BIN = vark))

E’I‘l’\e square brackets indicate the use of the enclosed parameter is optio-
nal‘)].

As above, outputdsn is the name of the output dataset. The input
dataset names are inputdsnl, inputdsn2, ..., inputdsnk. If specified,
varl is a Boolean variable which the SAS supervisor sets to 1 for each
observation input from the first dataset and to 0 for each observation
from the other datasets. Similarly var2, if specified, is set to 1 for
each observation from the second dataset and to 0 for observations from
other datasets. The other "IN" variables are similar.

As an example, if the dataset B.MALE contains data on male subjects
and B.FEMALE contains data on female subjects, one could create a dataset
containing data on both as follows:

Digitized by GOOg[Q

- 51 -

DATA B.BOTH;
SET
B.FEMALE (IN=IN_FEM)
B.MALE (IN=IN MALE);
IF IN_FEM THEN SEX='F'
ELSE SEX='M';

———————— - ———e - —————

|
|
|
!
|
L

The data for females would preceed the data for males.

8.2 Deleting Observations: Subsetting IF; DELETE

The DELETE statement is used to delete observations from the
output dataset. The actual effects of executing a DELETE are to
cause SAS:
a. To cease processing the current observation;
b. Not to write the current observation to the output dataset;
c. To immediately begin processing the next observation.
For example, if the dataset B.BOTH has data on males and females, one
wishes to create a dataset containing data on males only, and B.BOTH contains
a variable SEX, coded as 'M' or 'F' the following SAS step would be appropriate:

DATA B. FEMALE;
SET B.BOTH;
IF SEX NE FEMALE THEN DELETE;

The subsetting IF statement can be used to accomplish the same effect.
The general format is: "IF expression;" where expression is a Boolean expres-
sion. The action of the statement is exactly equivalent to:

. Digitized by GOOS[Q

- 52 -

IF expression THEN;
ELSE DELFTE;

'L
:
i
|
'

(Note that the statement following THEN is a null statement.) The example
above of selecting female observations could be coded:

DATA B.FEMALE;
' SET B.BOTH;
IF SEX = 'F';

The subsetting IF is described on page 104 of SAS79. DELETE and Sub-
setting IF work in any DATA step.

9.3 Selecting a Subset of Variables: DROP, KEEP

In a DATA step one may choose to have SAS not write selected variables
to the output file. SAS sets aside memory location for all variables defined
for the step. For DATA...INPUT step this includes all variables in the INPUT
statements plus all additional variables defined in statements within the step.
For other DATA steps (DATA...SET, etc.) this include all variables in the in-
put datasets plus any additional varia] es defined in the step. Because the
merory locations are assigned to all defined variables, all defined variables
are available for computation at all points in the step after they receive
their values. (Variables input from a SAS dataset receive their values ‘at'
the SET (or MERGE or UPDATE) statement. Variables input via an INPUT receive
their values upon execution of the INPUT statement. A variable appearing on
the left of an assignment statement receives its value when the assignment
statement is executed).

DROP and KEFP statements, described on page 111 of SAS79 are used to
restrict output to a subset of the variables. Use form 'DROP droplist' to
specify that the variables in droplist are not to be written to the output
dataset. Use "KEEP keeplist;" to specify that only the variables listed in

Digitized by GOOg[Q

- 53 -

keeplist are to be written to the output dataset. (Examples of DROP and
KEEP are shown in SAS79). Do not use both DROP and KEEP in the same step.
DROP and KEEP do not affect storage in memory; they affect only the list of
variables to be written out.

9.4 SORTING: PROC SORT

Sorting is especially easy in SAS, once the data are in a SAS data-
set. Actually, rather than sorting a dataset, one specifies both an input
SAS dataset and an output SAS dataset. SAS uses external software to read
the data from the input dataset, sort the data using temporary datasets, and
then write the sorted data to the output dataset. The general format is:

PROC SORT DATA = inputdsn

OUT = outputdsn;
BY key variables;

(The PROC SORT statement has additional options not discussed here;

see SAS79 pages 373 et. seq.) Here, inputdsn and outputdsn denote the names
of the input-and output SAS datasets, respectively. If outputdsn is the sdme

as inputdsn, the output is placed into a new SAS dataset. After the sort
step successfully completes the sorting and writing, the output dataset is
given the name of the input dataset @nd the input dataset is deleted. |

If the sorting process fails, due to lack

of disk spade or lack of time, for example, the output dataset would not be
completed, the name would not be transferred, and the effect would be the
same as if the sort had never been attempted.

Except for small, temporary datasets it is poor progremming practice
to give the input and output datasets the same name.

Sorting Order. The PROC SORT step must always include a BY statement,
which lists 'key' variables that determine the ordering of the output dataset.

Digitized by GOOS[Q

- 54 -

At this point the reader sould carefully examine the SAS79 PROC SORT example,
page 375. The key variables in that example are CITY and CHAPTER. CITY is
the major key variable CHAPTER is the minor key variable. Note that observa-
tions are ordered by CHAPLER within CITY.

Unless otherwise specified, SAS sorts data so all variables in the sort
BY list will be in ascending order. The values of the first BY variable will
be in strictly ascending order. The values of the second BY variable will be
grouped, each group being such that all observations in the group have the
same value of the first BY varndable. Within a group the values of the second
BY variable will be in strictly ascending order. (The example on page 375 of
SAS79 illustrates this for the case of two BY variables.)

If more than two BY variables are used, the values of the (K + 1)-st
BY variable are in order within each group defined by holding constant the
values of the first K BY variables.

Data may be sorted into descending order on one or more BY variables
by placing the keywork DESCENDING after such variables in the BY statement
as, for example:
BY HEIGHT DESCENDING
WEIGHT DESCENDING
AGE;
Here, . the sorted dataset values of HEIGHT would be in descending order.
For a group of observations having the same value of HEIGHT, values of WEIGHT
would be in descending order. For a group of observations having the same .
HEIGHT and WEIGHT, values of AGE would be in ascending order. The reader is urged
to create his own examples by selecting a sample dataset with several dis-
crete variables(e.z.race, sex, etc.), sort the data several times using dif-
ferent BY lists and different combinations of ascending and descending. Use
PROC PRINT to list the dataset after each sort to observe the results.

9.5 "FIRST" and "LAST" Variables

In a DATA step with a- SAS input data set (e.g., DATA...SET), if the
input dataset is sorted it is convenient for the programmer to be able to
determine when the value of one of the sort BY variables changes, i.e., to

‘Digitized by GOOS[Q

- 5§55 -

determine:
a. If one of the BY variables changed value when the current
observation was input (so that the current observation is
the first with this value of the BY variable):; or

b. If one of the BY variables will change when the next observa-
tion is read, i.e., if this is the last observation with this
value of the BY variable.

SAS provides a mechanism for making these determinations. To activate
the mechanism one uses a BY statement following the SET (or MERGE or UPDATE)
statement, as follows:

DATA outputdsn;
SET inputdsn;
By key variables;

The key variables are listed just as they appeared on the PROC SORT:
BY list, including the DESCENDING parameter, if used.

As an example, consider

- _ R

PROC SORT DATA = B. CAFEORIG :
| OUT = B.CAFESORT; !
BY PROVINCE CANTON DISTRICT;

DATA TEMP;
SET B.CAFESORT; {
BY PROVINCE CANTON DISTRICT;

— e — . o =

In this example SAS will geﬁerate 6 "automatic" Boolean variables,
named:
FIRST.PROVINCE LAST.PROVINCE
FIRST.CANTON LAST .CANTON
FIRST.DISTRICT LAST.DISTRICT

Digitized by GOOS[G

- 56 -

In general two autamatic, Boolean variables are generated for each
variable in the BY list. The values of these variables are set as follows:

FIRST.var = 1 if the value of var, or any variable which
5 preceeds var in the BY list, changed when the
. current observation was input.
[\0 otherwise
IAST.var = (1 if the value of var, or any variable which prece-
eds var in the By list, will change when the next
observation is input
0 otherwise

As an example, consider the following table. ™e values of the key
variables are shown on the left,and the values of automatic variables are shown
on the right. This "dataset" was generated by a program segment such as the
one in the box above:

~ First last ~ First Last First LAST
OBS REGION CANTON DISTRICT REGION REGION CANTON CANTON DISTRICT DISTRICT

1 1 1 1 1 0 1 0
I 2 1 1 1 0 0 0 1
b3 1 1 2 0 0 1 1
Iy 1 1 3 0 1 1 1

5 1 2 1 1 1 1 1

6 1 3 1 1 0 1 0

7 1 3 1 0 1 0 1
I8 1 n 1 1 0 1 1

9 1 L 2 0 0 1 0
10 1 u 2 0 1 0 1
L11 2 Y 2 1 1 1 1

Note that in observation 5, LAST DISTRICT = 1 cven though DISTRICT = 1
in both observation 5 and observation 6. Since DISTRICT is sorted within
CANTON, whenever CANTON changes DISTRICT is also assumed to change. Thus,
observation 5 is the last observation for DISTRICT 1 within CANTON 2.

Digitized by GOOS[G

- 57 -

Similarly, when REGION changes, as from observation 10 to observation
11, both CANTON and DISTRICT "change'", even though the values do not appear
to change. This is because observation 10 contains data on CANTON 4 within
REGION 1, which is assumed to be different from CANTON 4 and REGION 2 (observa-
tion 11). Since the CANTON is different, the REGION is also different.

Programming note: It is often desirable to know if there is only one
observation for each combination of values of the key variables, i.e., if
the values of the key values uniquely identify an observation. In the table
above, for example, the key variables do not uniquely identify the observations;
the first two observations have the same key values.

An observation is uniquely identified by the BY variables if and only
if, for the last variable in the BY list, FIRST.last = IAST.last = 1. In
the example above, the last variable in the BY list is DISTRICT; only those
observations with FIRST.DISTRICT = LAST.DISTRICT = 1 are uniquely identified
by the BY variables. (These are observations 3, 4, 5, 8 and 11).

The UPDATE statement, discussed below, requires that the "master" file
have all observations uniquely identified by the values of the BY variables.
The technique above can be used to check for this condition.

9.6 A Summarization Example:

The ideas and techniques discussed in the preceeding paragraphs are il-
lustrated by the program segment in Figure 2.10.. In this example the input
dataset is B.CAFESORT, which is sorted BY PROVINCE CANTON DISTRICT IDNUM. It
is desired to compute the total of the variable QUANTITY, and the average of
the variables WATER, IN_DIST, OUT DIST for each DISTRICT (within CANTON and
PROVINCE).

Digitized by GOOS[Q

- 58 -

Figure 2.10 An illustration of the Use of "FIRST", -and "LAST". Variable for
a Sorted SAS Dataset.

DATA B.STATS;

SET B.CAFESORT; * NOTE: CAFESORT IS SORTED-- 5

BY PROVINCE CANTON DISTRICT;

% "RETAIN" THE VARIABLES USED FOR SUMMING AND COUNTING;

RETAIN N TOT_QTY SUM H20 SUM-IND SUM OUT;

* ON THE FIRST OBSERVATION IN A DISTRICT

INITTALIZE THE TOTALS AND N;

IF FIRST DISTRICT
THEN DO
N=1
TOT_QTY=QUANTTTY;
SUM_H20=WATER ;
SUP?_IND:D‘I—DIST,
SUM-OUD= OUT_DIST;

!
— - comm—

-
F

———m e+ i e - - s ——

end;
ELSE DO,
* FOR SUBSEQUENT OBSERVATIONS INCREMENT TOTALS;
N=N+1
TOT QTY = TOT QTY +QUANTITY;
SUM H20 = SUM_H20 + WATER;
SUM_IND = SUM IND + IN-DIST;
SUM OUD = SUM OUD + OUT-DIST;
END; -

Digitized by GOOSIG

- 59 -

Fig. 2.10 Contin...

% AT THE LAST OBSERVATION FOR THE DISTRICT,
COMPUTE MEANS AND OUTPUT AND OBSERVATION;
, IF 1AST, DISTRICT !

THEN DO
MEAN -H20 = SUM H20/N;
MEAN_IND = SUM_IND/N;
MEAN- OUD = MEAN OUD/N;
OUTPUT -
END;

ELSE DELETE; * WE OUTPUT AN OBSERVATION
ONLY AT THE END OF THE
DISTRICT;
KEEP PROVINCE CANTON DISTRICT N
TOT_QTY MEAN 20 MEAN IND MEAN OUD;

— —— - a—

Theartput dataset, B.STATS, is to contain the variables PROVINCE, CANTON,
DISTRICT, TOT QTY (total of QUANTITY), MEAN H20, MEAN OUD (means of WATER,
IN_DIST, AND OUT DIST, respectively), and N, the number of observations used
to campute the sum and means. It is assumed there are no missing values.

Exercise. Invent data values for the variables WATER, QUANTITY, IN DIST
for each of the observations shown in the last box in section 9.5. By hand
(not on the computer!) trace through the execution of the program in Figure
2.10 and 'produce’ the output dataset. Verify that you understand exactly how
the various features of the program work.

Note: There are more efficient ways to perform the task of Figure 2.10 in SAS,
including PROC SUMMARY and PROC MEANS. The purpose of the example is to illus-
trate the features discussed in this chapter and related programming techniques.

Digitized by GOOS[G

- 60 -

10 Advanced SAS File Processing: MERGE, UPDATE

The reader is now sufficiently prepared to study chapter 9 of SAS79,
which discusses the SET, MZilc and UPDATE statements in detail. The SAS79
chapter 9 description is adequate for the purposes of this section.

11. File Manipulation PROCs

SAS provides several PROCs for assisting in the manipulation of 0S
files and SAS datasets. The student should now study the following section of
$AS79:

Chapter 14, 'Overview: The PROC Step". p. 119
PROC CONTENTS, p. 179
PROC COPY, p. 171
PROC DATASETS, p. 179
PROC DELETE, ©p. 181
PROC MEANS, p. 303
PROC PRINT, p. 353
PROC RELEASE, p. 365
PROC SUMMARY, p. 397
PROC TAPECOPY, p. 419
PROC UNIVARIATE,p.427

The statistical procedures in the list above, MEANS, SUMMARY and
UNIVARIATE are useful for reviewing a dataset to scan for bad data values,
etc. In addition, MEANS and SUMMARY are useful for summarizing a dataset
i.e., inputting one dataset and computing summary statistics which are
then output to another dataset. The output dataset is then available for
further processing.

Digitized by GOOS[G

IIT.

- 61 -

A GENERAL RESEARCH DATA MANAGEMENT SYSTEM MODEL

1. Introduction: Objectives

The purpose of this section is to present a general model of an RCM
system. The word 'model' does not mean that the system is ideal and could
be reproduced exactly for each problem which arises. Rather, the system
is a model in the sense that it has most of the features one would consider
for inclusion in a system being designed. For a particular problem, one
must select approppriate parts of the system and adapt those parts to the
needs of the particular problem.

The following sections contain a flowchart of the model system and
description of all the subsystems and corponents. Implementation of the
system in SAS is discussed in those sections where the methods of implemen-
tation may not be obvious.

2. Flowchart and Major Components of the Model System

A flowchart of the model system is presented in Figures 3.1 and 3.2.

The system has five major components:

- Preliminary Manual Processing

- The Main Data Managcment System (Error Detection, File Maintenance)
~ The Inventory Subsystem

- The Error Corrcction Subsystem

- The Quality Control Subsystem (Mot in Flowchart)

In the flowchart, the Main Data Management Systom (DMS) is indicated by
a box made of broken(---) lines, Figure 3.1. Preliminary Manual Processing
consists of those steps above the DMS box in Figure 3.1. The Inventory Sub-
system is to the left of the Main DMS box, and the Error Correction Subsys-
tem is diagramed in Figure 3.2. The following sections contain detailed dis-
cussions of these components.

3. Distributed Flat File Processing: Helms (1979) discusses the 'Distribut-
ed Flat File' strategy for RDM problcams with multiple data streams. The basic
points are as follows.

Digitized by GOOS[G

WRISAS INGGOVNW WING HONVESRH TYOTAAL ¥ J0 DIVWOLL T'€ oL

. . e R T
e . el s
Lo
fooan
e
AR NTY
[. ' .
.ol . A “x
o ..
.
' S e e :
e
» T ——— -y -
: : i
. : t
R :
- - ;
NI e I
!
che s . .
. -7 H
, . %

ot
: H
o
YT

]
i
i
PEASE .
wey F

Rt TF

L

- 64 -

Many projects involve the collection of several different types of
data over a period of time. If the different data types (data forms) are
all collected on the same schedule then the data are easily linked by time
period and all of the data with the same schedule constitute one data stream.
However, in many cases different types of data are collected on different
schedules. For example, onc study may have one type of data collected monthly,
another type collected quarterly (each three months), another type collected
annually, and yet another type collected when a particular evemt occurs, i.e.,
essentially at random.In sucha case, each type of data constitutes one data
stream; the whole project has several data streams. For the production data
processing phase, Helms (1979) has shown that sctting up a separate RDM sys-
tem for each stream is often an excellent strategy. This is called the 'Dis-
tributed Flat Files' (DFF) strategy.

If one takes the DFF strategy, then instead of designing and implement-
ing one large and complicated system, one implements one much simpler system
for each data stream.

The model syster described in the following sections does not assume
either the DFF strategy or the converse, the 'monolithic system' strategy.
To use the DIF strategy one simply implements separate systems for separate
data streams. The monolithicsystem strategy may be implemented by design-
ing a IMS component capable of hardlingall the streams simultaneously.

4. Preliminary Manual Processing:

The tasks involved in preliminary manual processing depend to a great
extert on local factors such as the source of the data (internal or external
to the organization), whether data forms are completed locally or at another
location. The nature of the study (longitudinal or cross-sectional),etc.

Forms are typically received in a package, which may contain several
types of forms from several data strecams. One of the first manual steps
is to 'log in' the forms, making a paper record of the existence and arrival

Digitized by GOOS[G

- 65 -

of each form. Typically, this 'log in' step creates data for the Inven-
tory Subsystem, which maintains information about the presence, loca-
tion and processing status of data records. Inventory data are keyed
immediately. Project data undergo additional processing before keying.

4.2 Hard Copy Backup:

If the data have any substantial value the next step is to make a
'hard copy backup' copy of the data forms. For very small projects the
backup may be by xerography or other photoccpying. For larger studies
microfilm is less expensive and recuires less storage space, though there
is a greater initial investment for the equipment. Another advantage of
microfilm is that additional backup copies are very inexpensive; and it
is practical to obtain and to store an additional copy in a remote, secure
location. In the case of a fire at the data processing facility, the back-
up at the remote location may be the only remaining copy of the data.

MANUAL. FRROR SCAN AND CORRECTION

Before keying, the data forms are reviewed carefully by a person
familiar with the project and its data. Correcting error at this stage
is much less expensive and less troublesome than making corrections to a
computer file! The reviewer carefully checks each form for legibility,
for camplicance with instructions, for obviously inccrrect or inconsistent
data, for missing data, etc.

The most important checking in the manual error scan is for key
field errors. A key field is a data field which will later be used for
sorting and/or for identifying a particular record, a particular subject,
etc. Key fields are often called identification fields and often appear
in BY statements in SAS program. Non-key fields are called 'data fields'.

Key field errors are much more difficult to correct than data field
errors once the data are on a computer file. The procedure for correct-
ing a data field error is to input a new, correct value and update the
observation (described later). To 'correct' a key field it is necessary to make

Digitized by GOOS[G

- 66 -

an entire new observation (keypunch new cards) add the new observation to
the file, and delete the old observation with the erroneous key values.

The manual data reviewer should very carefully key field values and
determine that they are absolutely correct. It is sufficient to simply deter-
mine that key field values are in a valid range.

Any errors detected in the manual error scan are corrected before data
are keypunched. Usually, the data reviewer must contact the persons who entered
the data on the forms in order to determine corrections. '

New errors may be accidentally introduced when ‘‘corrections’ are made.
All data changes made by the reviewer are checked by a supervisor before the
corrections etc., are entered into the system.

After the manual error scan and correction (if necessary) the data
are sent for keying. Note that the inventory data, created by the lcg-in
process were sent to be keyed immediately after log-in.

Key-and-Verity

Data are keyed (keypunch, key—fo—disks or equivalent) and verified.
Persons who process unverified data are wasting time and money---random
numbers, the product produced by unverified keying, can be created much
more quickly and less expensively by computer. If one wishes to process
such random numbers, why bother with data forms and keying?

The output from the key--and--verify step is shown on the flowchart
(Figure 3.1) as a data card. This is only symbolic; if one uses key-to-
disk or key-to-tape an approppriate symbol can be subtituted.

5. Bmphasis on Security and Error Detection and Correction

The reader will quickly observe that one of the difference between
amateur and professional data management ic the professional's concern for
the quality and security of the data. These concerns are manifest in ex-
tensive data backup and error detection--correction facilities in the sys-
tem. In many research projects there is a point, after the data have been
collected and before substantial analyses heve becn completed at

Digitized by GOOS[G

- 67 -

which almost the entire investment in the etudy -the financial investment,
the investment of significant time from the careers of participating sci-
entists, and the manpower investment-is concentrated in the data files on
a few tapes or disks. Destroy those files and you destroy almost the en-
tire investment in the study.

Data files may be destroyed due to physical disaster, such as fire
or flooding or by computer malfunction (disk “crash’, data overwritten by
other data, etc.) Backing up files is the appropriate protection against
this type of disaster, this topic will be discussed in the section on Data
Security.

One can also effectively destroy the project's investment by intro-
ducing random (or systeratic) errors into the data and not removing them.
Exrrors are introduced at each stage of human transcription or processing.
(Computers introduce errors, too, but that is a different topic.) Errors
are introduced when the data are originally 'captured' (as responder error
in interviews), when forms are completed, when "corrections" are made.

The question is not whether errors are introduced at each of these stages,
but how frequently. That is, the question is: what is the error rate of
each human transcription or process?

If the cumilative rate for uncorrected errors is too high one des-
troys the project's investments in the study just as surely as if one had
bumed all the copies of the data. Destruction by errors is even nmore
insidious than by fire. One is immediately aware of destruction by fire.
When a file is destroyed by errors the results of the errors may be publish-
ed in the scientific literature and the erroneous conclusions may not be
discovered for years. The drug thalidomide, which caused so many birth
defects, was marketed without sufficient experimentation for side effects,
but it is obvious that uncorrected data errors could lead to this kind of
disaster.

Data errors are important. The reader will note that a substan-
tial component of the system is devoted to the detection and correction of

Digitized by GOOS[G

- 68 -

errors and the estimation of error rates (quality control subsystem).

6. Error Detection

The primary objectives of the main Data Management System (DMS)

1. To detect errors and provide for their correction

2. To maintain (create, update) the master data file

3. To produce report.. to project managers on the status of
data processing.

4. To provide for data security through systematic file backup.

A system may be implemented in one, or several computer programs.
In a SAS implementation, such a 'program' usually includes several SAS
steps.

Error detection is performed in two places in the Flowchart of
Figure 3.1: in the Data Input Phase program and in the Error Detect and

Update program.

The principal purpose of error detection in the Data Input Phase
program is to detect structural errors, such as invalid key field values
and 'miséing cards'. The system's major computerized error detection ef-
fort is concentrated in the error detection component of the Error Detect
and Update program. This component subjects data to the most rigorous
tests practical, within the framework of the particular project.

The remainder of this section describes techniques of error de-
tection. There are two basic types of error detection tests, field tesgs
and consistency tests.

A field test is a test based solely on knowledge about values
which are permissable for the data field (variable). Three types of field
tests are commonly used: 1. valid values, 2. valid range, and 3. field
type definition.

Digitized by GOOS[(’,

- 69 -

6.1 Valid Values Field Tests. One uses a valid values field test when
the complete set of valid values for a variable (field) is known and has
few elements. Consider, for example the item from a data form:

' 17. Sex of subject:
| 1. Male ...M
; 2. Female..F

1

There are only two valid values for the variable, SEX, from this
item. The valid value field test would determine if the data value is one
of the valid value, e.g.,

IF NOT (SEX = 'M' or SEX = 'F')

THEN take error action;

We have not yet discussed 'take error action', but at least one

example has been illustrated, Another form of this statement uses a Boolean
variable:

—

ERR1 = NOT (SEX = ™'
OR SEX = 'F")

This type of statement can be 'mechanized' (for easy program
keypunching) for variables with more than valid values. Suppose ITEM
has valid values 1, 2, 3, 4 and 9; the following statement contains the
essential part of valid value test:

pr— ——

ERR2 = NOT (ITEM = 1

OR ITEM = 2
OR ITEM = 3
OR ITEM = 4
OR ITEM = 9):

—— —— . — ——. e S e e, et]

Digitized by GOOS[G

- 170 -

Valid value testing tends to produce long SAS programs for
obvious reasons. Proper program formatting improves readability,
reduces errors, and cuts debugging/testing time.

6.2 Valid Range Field Tests. Numeric variables which are known

to lie in a particular range, and which have more valid values than can
can reasonably be checked by a valid values test may be checked by

a valid range test.

As an example, consider a date which is known to lie between
200CT73 and 05JAN75 and for which the year, month and day have been
separately input into the numeric variables YEAR, MONTH and DAY res-

pectively.

If a date 1s subject to error, it is good programming practice
to input the components scparately and to perform the conversion to a
date variable internally, where the program can control the effects of
errors. Errors in SAS date format conversion result in a missing value
for the date -- a situation beyond the programmar's control. The pro-
gram segment in Figure 3.3 performs valid range tests on MONTH, DAY
and YEAR and, if the individual values are valid, converts these values
to a date variable and checks the range of that. Note that the program
leaves detailed checking of the number of days in the month to the SAS
function MDY. (See SAS79, page 41) MDY will return a missing value if
the combination of month and day are invalid.

6.3 Consistency Tests:

A field test campares the value of a variable with the allowable
values of that variable, other factors being ignored. A consistency
test uses comparisons of the values of two or more variables. Dates
provide a good example. Given a MONTH, DAY and YEAR, as in Figure 3,3,
a field test for Day must use only the valid range, 1 DAY 31. A
consistency test of MONTH and DAY can further check for invalid combi-
nations, such as February 30. Thus, DAY = 30 would pass the valid
value field test, but the combination MONTH = 2 and DAY = 30 would fail

Digitized by GOOS[(’,

-7 -

the consistency test. (The classic example in medical data is a comparison
of SEX versus PREGNANT, to check for pregnant males).

The information for a consistency test may be know a priori from
certain rules, as in the date example, or from previously p;blished results.
In addition, consistency tests can be generated from data. Consider two nu-
meric variables, X and Y which have a high linear correlation coefficient.
One can perform a regression analysis, to obtain regression coefficients
and 99.9% confidence bands for a future observation of Y, given a value of
X.

The test consist r in determining for a given X value, whether or not
Y lies in the 99.9% confidence interval. If Y is inside the confidence
interval the test is passed, otherwise the test is failed. Of course,
one can use confidence coefficients other than 99.9%.

The data for determining the consistency tests may come from pre-
liminary analysis of the data being processed, from prior data, or from
previously published results for similar data.

6.4 Errors and Improbable Values. The process of error detection is
inexact. For example, a date which should be (in yymmdd format) 800105
and is actually entered as 800205 might not be detected by any test.

In contrast, a rare value such as a HEIGHT = 225 am for a human female,
ought to fail a valid value or consistency test, even if the value is
correct.

The objectives of error detection strategies and procedures are:

1. To detect as many errors as possible
2. Consistent with a reasonable processing cost.

In a valid range test for human HEIGHT, for example, by making
the valid range very short, virtually all the very large errors (differerce
between true height and recorded height) will be repoxted, but a large
number of correct values will be reported as possible errors. It costs
money to check an error message and update the file to reflect the results

Digitized by GOOS[G

- 72 -

of the check.

Reasanable error detection necessarily involves trade-offs between
the cost of not detecting errors which exist in the data and the cost of
processing error messages for correct data.

The appropriate approach is to define tests which detect a reasona-
ble proportion of improbable values, whether correct or not. Professional
judgement is required to determine the proportion of correct values which
will be reported as 'errors' (improbable values).

Redundant Information: All error checking is based on partially
or totally redundant information. In the example of valid value testing
of the variable SEX, the two redundant pieces of information are:

1. The value of SEX

2. The valid values of SEX

For another example, since human height and weight are highly
correlated, these variables are partially redundant and can be used for
a consistency test. Variables which are totally umrelated cannot be
used for a meaningful consistency test. The more redundant the informa-
tion, i.e., the closer the relationship between two (or more) variables,
the better the resulting test will be.

The principle of basing tests on redundant information is important
in the design of data collection forms and instruments. Completely redun-
dant data will be collected on variables which are crucially important to
a study. Chemists, for example, routinely run three (or more) trials of an
important assay. If one of the values differs markedly from the others,
corrective action is taken. When such multiple determinations are made

they should be included in the data.

We use only partial redundancy for less important variables. The
redundancy may come from knowledge about the variable (as in a valid value
test) or from knowledge of the approximate relationship between two or more
values, as in a consistency test.

Digitized by GOOg[Q

- 173 -

When designing data forms and a data management system, one must
determine the relative importance of each variable to be collected. Total-
1y redundant information must be collected on crucially important variables.
Partially redundant informetion is collected on variables of less importance.
Variables which are not important enough to justify some redundance and care-
ful checking should be omitted from the study.

7. What to do with "Dirty" Data

What should the system do with observations which contain detected
errors or "improbable values"? There are two basic strategies.

Clean File -- Dirty File. One strategy for dealing with the problem
is to produce two "master" files. All observations which have no detected
errors are placed in a ‘'clean” file. All observations containing detected
errors, or improbable values, are placed in a "dirty" file. Error correc-
tions are made to observations in the dirty file. When an observation has
been "purified" (all detected errors corrected and all correct-but-improbable
values verified), it is moved to the clean file in an update run.

The clean file -- dirty file strategy has the advantage that preli-
minary analyses can be performed with the clean file with no particular pre-
cautions about erroneous data.

In some projects, however, error correction can require substantial
time especially if the data volume is large and the data collection center
is remote from the data processing center. In such a case,data accumilate in
the dirty file and movement to the clean file is very slow. In addition, if
an observation contains many variables, the probability is great that at least
one variable will fail at least one test, whether the value is improbable -
but - correct, or in error. Here again, observations tend to accummlate in
the dirty file and move slowly to the clean file. The failure of relatively
unimportant variables to pass tests may kecp correct, important variables out
of the clean file for months.

Digitized by GOOS[G

- 74 -

Status Bytes: The alternative strategy, apparently first used
for research data by Helms (1972) utilizes a single master data file
which contains all available data records. Fach record ("observation"
in SAS) contains one ‘'status indicator" for each data variable. The
indicator contains information about the quality of the associated va-
riable. (For convenience, systems using this technique usually use one
byte to store the value of each status indicator, and the term 'status
byte' has become popular. More compact schemes are possible because the
number of possibly statuses is small).

The Error Detect and Update program sets the values of status bytes.
At the beginning of error testing of a new observation, all status bytes
are initialized to values indicating, 'no error detected'. (See figure
3.4 for a typical set of status byte codes). It a variable fails a valid-
value, valid-range or consistency test,the status byte is set accordingly
(and error messages are printed).

Digitized by GOOS[G

- 75 -

Figure 3.4, A Typical Set of Status Byte Codes

— v e - -

"' (blank) No error detected for this value
4! This value failed one or more tests

Code Interpretation !

but was subsequently determined by i
a human to be correct. The system |
will not change this code. |

'e! This value has failed a consisten-
cy test.

™' The data value is missing.

A This value failed a valid value or

valid range test.

Note: In the IBM 370 collating sequence,
B L e L et M <

This ordering of the codes reflects increasing severity of ‘error'
or decreasing estimated quality of the value:.

Digitized by GOOS[(’,

- 76 -

Status bytes maybe reset as a result of the error correction
and update process, described in a subsequent section.

With the status byte technique all the data are available for
preliminary analysis. The analyst can determine, on a variable-by-
variable basis, how 'clean' data should be to enter the analysis. If
there are errors in variables not involved in the analysis, the 'clean'
data in the observation may still be used. In contrast, under the clean
file -- dirty file strategy, only records which are completely clean
may be used.

Neither strategy is always superior: the strategy to choose will
depend upon the circumstances of the particular project.

8. File Maintenance

Although essentially distinct, the file maintenance function and
error detection function are performed in the same program, Error Detect
and Update. For file maintenance one could choose either direct or sequen-
tial access tO master files. SAS supports only sequential processing,
which is discussed here.

The basic file maintenance process is based upon the SAS DATA
and UPDATE statements. The procedure involves copying data from an
"old master" file (the most up-to-date version of the data available
for input) to a "new master" file. Modifications are made during the
copying process as indicated by 'update transactions' (observations)
from a 'transaction file'.

All tree files contain the same key (BY) variables and all are
sorted in the same sequence. The update procedure is described in some
detail in chapter 9 of SAS79 especially pages 85-88. '

9. The Error Detect and Update "EDUPDATE" Progrem

The key software in the system is the Error Detect and Update

(EDUPDATEY~" Program. This prcgram may be defined in terms of its inputs,

its outputs, and its processing, which are discussed in the following

Digitized by GOOS[G

- 177 -

paragraphs.
9.1 Inputs
As shown in Figure 3.1. The inputs to the FDUPDATE are the NEW

DATA ("NEWDATA"), ERROR CORRECT TRANSACTION (“FRRCORR") and OLD MASTER
("OLDMASTR") files.

Since a SAS DATA---UPDATE step can process only one old master
and one transaction file a preliminary SAS step is executed similar
to:

= —— -

| DATA TEMP;

! UFDATE B.NEWDATA
: B.ERRCORR;
i BY key variables;

o

The temporary dataset TEMP is then used as input to mAin step of EDUPDATE.
However, it is more convenient to describe NEWDATA and ERRCORR separately.

NEWDATA, This dataset contains new data, sorted by the key var-
iables.The Data Input Phase ("DIP") program has already verified that:

a. Key vadables pass appropriate.field tests.
b. Each record on the dataset is uniquely identified
by its key variables.

Program DIP also adds one varicble (to key and data vardables):
INPUTDAY, containing the date and time the DIP parogram was executed.

ERRCORR. The format of this SAS dataset will depend to a great
extent on the details of the error correction subsystem, described in a
separate section. If a "turnaround" keyable error correction form, des-
cribed in that section, is used the ERRCORR dataset will typically be

as follows.

Digitized by GOOS[G

- 78 -

Each observation contains all key, data and status byte variableg
with the same types and lengths as on the OLDMASTR. The observation also
contains the following additional variables:

CORRTIME, A SAS date-time variable containing the date and time the error
correction DIP progrem was run.

FIAG, a one-byte character variable, input from the error correction
form, coded as follows:

'c! indicates this observation contains a correction
data value to replace the value of a variable on
OLDMASTR.

'D! indicates that the observation on OLDMASTR with
key values matchingthis record is to be deleted.

"B* indicates that this is a new data observation.
New data observations enter via the correction
stream when, for example, an error is discovered
in key values. The o0ld record is deleted and a
new observation, with correct key values, is entered.

Typically, one ERRCORR observation is generated for each data cor-
rection. For example, if three fields are being corrected for one OLDMASTR
observation, ERRCORR would contain one observation for each. Thus, in one
ERRCORR observation most of the variables would have missing values. The
Error Correction Subsystem might cambine all ERRCORR observations for one
OLDMASTR observation into a single observation.

ERROORR is sorted by the key variables and FLAG. ,
Note that CORRDIP, the Correction Data Input Phase program, stores
both data values and status bytes on ERRCORR. The names of the ERRCORR
status byte variables are different from OLDMASTR status byte variables
so that the status bytes of OLDMASTR must be explicitly updated by EDUPDATE.

Digitized by GOOS[G

- 79 -

(Otherwise blank status bytes from ERRCOR would overwrite non-blank
status bytes from OLDMASTR during the SAS update phase).

OLDMASTR is the most recently created version of the master
data file. It contains all the key, data, status, and date-time vari-
ables described above plus:

UPDATED, a date-time variable set to the date-time
that an observation is added to OLDMASTR
or modified by EDUPDATE.

FLAG is not included in OLDMASTR or NEWMASTR..

CLFAN a Boolean variable with value 1 if the ob-
servation is 'clean', or otherwise. ‘Clean"
means all variables have status { = '¢'

CHECKED, a date-time variable indicating the date-time

< error detection was performed.
Of course, OLDMASTR is sorted by the key varia-
bles.
9.2 Outputs

EDUPDATE creates two output: SAS datasets, NEWMASTR and INV_TX,
and two or more print datasets, including MESSAGES and ERRORS.

NEWMASTR contains the same variables as OLDMASTR and is sorted
in the same sequence.

INV_TX, the Inventory File Transaction dataset, contains one
observation for each:
a. New observation added to the master file;
b. Master file observation modified by EDUPDATE.
INV_TX contains the key variables, plus the variables UPDATED, CLEAN, and
CHECKED. The use of this file is described in the Inventory Subsystem
section.
The ERRORS print file contains data-error messages for 'errors'
detected by EDUPDATE. This printout is described in the Error Correction

Digitized by GOOS[G

- 80 -

Subsystem section.

MESSAGES. This print file contains a report on the updating
process, including:

Total number of cbservations in OLDMASTR
Total number of observations deleted
Total number of new observations added
Total number of observations in NEWMASTR

(These totals permit a determination of whether observations
have been 'lost' or erroneously added between or during update runs.)
MESSAGES also contains the total number of 'clean' observations, total
nunber of corrections, and other interesting statistics.

DELETES. This print file contains a formatted listing of all
observations deleted during the update run.

PROBLEMS. This print file contains formatted listings of obser-
vations involved in apparently erroneous transactions as, for example:

- When a correction or deletion observation appears in ERRCORR
with no matching observetion on OLDMASTR.
- When a new data observation updates an observation previously
on OLDMASTR.
- Only correction or deletion observations should update an ob-
servation on OLDMASTR.
Other update problems are also reported on this file.

9.3 FDUPDATE Processing:

As noted in the section on FDUPDATE inputs, EDUPDATE contains a
preprocessing step to combine NEWDATA and FRRCORR into one dataset TEMP.

The second SAS step is typically the update step, with a basic
structure indicated by the following:

Digitized by GOOS[G

[

—— ——— ——— —— . — . = S — . ———— — o e r—— o a—
[—

- 81 -

DATA B.MASTER14
UPDATE B.MASTER13 (IN = IN-CLDM);

INVENTOR TX27 (KEEP = KEY UPDATED CLFAN CHECKED)

TEMP (IN = IN-T);

MASTER14 IS NEWMASTR;

MASTER13 IS OLDMASTR;

TX27 CONTAINS OUTPUT INVENTORY FILE TRANSACTIONS;
TEMP CONTAINS NEWDATA AND ERRCORR:

*» % ¥ %

This is a section of code checking for, and handling,
processing problems. See PROBLEMS file description.

— — s

This block represents a section of code which processes
a DELETE observation

—— . o — . — a—— — -

This block represents a section of code which processes '
correction updates, including moving new status byte
info, into MASTER status byte variables.

This block represents a section of code which performs ' l
field tests on new or modified fields. i

e a— —— ——— . —— — - ———

. o . . |
This block represents a section of code which performs
consistency tests on new or modified field. Note: pro-
gram will not modify a '¢' status.

- —

P —— — e - — —— i S S ————— o ———— — — ——

This block represents code which outputs observations
to NEWMASTR and TX, as appropriate.

e ——— a—— — - —— c—

e e e e

Digitized by GOOS[G

- 82 -

Note that the error detection blocks, upon detecting an ‘error',
print appropriate error messages and set status bytes to appropriate
values. Fields which are unchanged from OLDMASTR are not field-tested.
A consistency test is performed only if at least one of the participat-
ing variables has a new value and all have passed field tests.

Backup, File Rotation and Naming of MASTER Files:

The figure above illustrates the use of numbers in creating data-
set names for MASTER and transaction files. Note that the name actual-
ly used for OLDMASTR is B.MASTER13 and the name used for NEWMASTR is
B.MASTER1I4. This indicates that OLDMASTR was a result of the 13-th up-
date and the current update is the 14-th, producing MASTER14. In this
case both MASTERS are in the same database, B. (A better Strategy uses
two databases on separate disk packs, especially for large datasets.)

The OLDMASTR is retained as a backup. If NEWMASTR is destroyed
for some reason, or if the update job fails the first action to be taken
is to_copy (OLDMASTR) (here B.MASTER13) to tape and place this tape in
a safe place. This action protects OLDMASTR as a backup, in case fur-
ther problems occur. Then, after the backup is successfully completed,
attempts are made to run the update correctly.

If, in copying to tape, OLDMASTR should be destroyed (as a result
of system error, power failure during the run, or whatever cause) an at-
tempt should be made to make a backup copv of the previous OLDMASTR (here
B.MASTER12). Then two update runs would be made, one to re-produce
OLDMASTR and then one to produce NEWMASTR.

From time to time the NEWMASTR is copied to a tape which is placed
in a safe, remote location. Many institutions do this after each eight
updates (MASTERS, MASTER16, etc.)

Eventually, one exhausts the space in the SAS databases used for
the MASTER datasets. (A PROC CONTENTS should be run before each update
to determine if enough space is available. Space is made available by

Digitized by GOOS[(’,

- 83 -

detecting the oldest MASTER datasets and copying corresponding transac-
tion datasets to tape. Before deleting any MASTER dataset, the most
recent MASTER is copied to tape, along with all transaction datasets
used to produce it. For example, suppose MASTER8 was previously saved

to tape and updates have been run to produce MASTER9, MASTER10,...,
MASTER14.

We now need to delete datasets to make space available for MASTER
15. First we copy to tape MASTER14 and all of the transaction datasets
used to create MASTER9, MASTER10, ..., MASTER14. This tape i1s checked
for readability by copying its contents to another tape. (PROC TAPECOPY).
The extra copy is checked for readability and moved to a remote, safe
location. Now, MASTER8, MASTER9, ..., MASTER12 (not MASTER13 or MASTER
14) and the transaction files used to create MASTER8, ..., MASTER13 can
be deleted. We always keep on disk the two most recent MASTERs and the
transaction files used to create them.

This 'insurance' system provides security for MASTER files against
destruction. If a MASTER file in accidentally destroyed, it can be re-
created with a reasonable amount of time, effort and cost.

11. The Inventory Subsystem |

11.1 Introduction

The Inventory Subsystem (INVS) is a small data management system
which helps data processing project management control its inventory of data
records. The INVS maintains information about the progress of each
data record through the various carponents of data management. If the
main data management system loses records, or erroneously 'generates'
additional records, this fact may be discovered by examination of INVS
reports.

INVS receives informetion (transaction observations) from each of
the following stages of data management:

- 'arrival' observations, from Preliminary Manual Processing

-Digitized by GOOS[(’,

Each INVS

- 84 -

'Input' observations from the Data Input Phase Program
'"Error' observations if error messages are generated for
the data observation by either the Data Input Phase or
EDUPDATE programs.

'Correction' observations generated by the EDUPDATE pro-
gram when correction transactions are updated to the
master file.

'Update' observations when the data observation is ad-
ded to the data file.

transaction contains the date (arrival observations) or

datetime (caomputer-generate observations) of the event being report-
ed. Thus, the progress of a data observation through the system
can be traced through INVS data. (Incidentally, the same variables
are maintained on the MASTER files).

A flowchart of this INVS is shown in Figure 3.6. There are three
basic phases:

Generating, checking and correcting arrival records
in Preliminary Manual Processing.

Generating other transaction records (by other sub-
system computer programs, such as DIP, EDUPDATE).
File maintenance and Report Generation.

The flowchart shows only the first and third phases; the second
is a component of other subsystems.

11.2 Generating arrival observations.

The preliminary manual processing phase generates the information
for arrival records (INVCARDS in the flowchart). The details of this
component depend greatly upon the details of the particular project: the
quantity of forms received and processed, the number of data streams, the
personnel available, etc. The objective is to obtain very accurate in-

Digitized by GOOS[G

- 85 -

Figure 3.6 FLOWCHART OF THE INVENTORY SUBSYSTEM

/
/A\ | mwearos INVENTORY "Arrival" Cards, produced in
\./ the Preliminary Manual Processing Stage
l INVDIP INVENTORY Data Input Phase Program
INVDIP INVDIP
ERROR STATUS
MES MESSAGES—) NV_TX0
INVCARDS INVCARDS
(RRECTIO ~—

/
@é—-— INVCARDS
(OORRECTED)

INVENTOR B.
MASTERNn INV_TXm

K_,/ _T__/
INVUPDAT

> INVUPDAT INVUPDAT
INVENTOR REPORTS ___
MASTERnHL “__—

-' Digitized by GOOS[Q

- &6 -

formation about the arrival of each data form, but to obtain this
information with as little work and cost as possible. Typically,
when forms arrive from a remote location, the processing center
prepares an 'unpacking form' to record arrival of data. With care-
ful design this form can be the source data form for arrival data
(INVCARDS). Figure 3.7 illustrates, schematically, how such a form
might appear. Note that several pages of DATA ARRIVAL FORMS may

be generated on any one day and each page may generate several cards
of information. All the identification information (Project, date of
arrival, etc.) is duplicated into each card, of course.

The data fields for a form which has arrived contain the values
of all key variables -- enough information to uniquely identify the form
and its resulting observations on the MASTER and INVS MASTER files.

Digitized by GOOS[G

- 87 -

Figure 3.7 Schematic Illustration of a Data Arrival Form

o e — s

FORM
REMARKS
. . DATA ARRIVAL, FORM
Z
Preprinted : XY Project Identification
L1 1 t—1 1 11y Date of arrival (yymndd)
L_1_0F, Page number (of total for thiss
- date) '
May be pre- 1 31, FormType
printed
List of Form Received
These data punch- 1. (, L ;1 . L .
ed in first card -
L 14 1 2 1 1 1
Data punched in 2.0 14 | 4 Loa bl }
second card
Last card for L 1 g 1 L)
this page

Digitized by GOOS[G

- 88 -

The DATA ARRIVAL FORMS are checked for accuracy and punched immedia-
tely. (Data forms go through more extensive checking). The resulting cards
denoted INVCARDS in the flowchart, are then processed by the INVS Data Input
Phase program INVDIP.

11.3 DIP Processing of INVCARDS

Program INVDIP reads the INVCARDS, checks for errors, produces two
print files, INVDIP STATUS and INVDIP ERROR MESSAGES, and an output SAS
file of inventory transactions INV _TXO.

INVCARDS. The INVCARDS are punched and verified directly fram the
Data Arrival Form. INVCARDS format obviously depends upon the format of
its form. :

INVDIP STATUS is a print file containing two sections. The first is
a listing of the input data in a format closely resembling the Data Arrival
Form. This listing is useful for proofreading input data to check for errors.
The second listing is essentially a PROC PRINT listing of the output file,
INV_TXO; it is used to check the program's output.

INVDIP ERROR MESSAGES. The INVDIP program performs a variety of error
tests of key‘ and data variables, tests for missing cards or 'pages' of input,
etc. Any errors or improbable values are indicated in this printout.

The INVDIP program reads the input data, produces the printouts al-
ready described, and produces the output file, INV_TXO, sorted by key varia-
bles.

INVDIP must also be able to process INVS correction and INVS deletion
records, which are used to correct errors that enter the INVS MASTER files.
INVS correction and deletion records, and 'new observation' records, contain
flags much like the FLAG variable in the DMS correction and deletion obser-
vations.

INV_TXO contains one observation for each form received (or error,
deletion, or 'new' observation with a FLAG). Each observation contains:

Digitized by GOOS[Q

- 89 -

Key variables (as in data MASTERS)

FORM TYPE - (for projects with multiple types of forms)

DATEARR - date of arrival (SAS date variable)

FLAG - to indicate new data, error correction, or
deletion record

PAGE - Page number from input data

CARDNO - Card number within page

(other variables on INVS MASTERS).
Note thet PAGE and CARDNO are available for checking and are not updated to
INVS MASTER.

INVCARDS CORRECTION. After INVDIP is run, the output is carefully
checked for error messages and the data printout compared versus the Data
Arrival Forms. If errors are found, the INVCARDS are corrected and the job
is re-run. MNo INVS data are moved to the update phase until all errors have
been corrected.

This error detection -- correction process has high priority because
the INVS files must be updated quickly to serve their purposes.

11.4 INVS File Maintenance Phase

INVS file maintenance is a straightforward SAS file maintenance, based
upon the UPDATE statement, with a report generating routine. As noted earlier,
INVS update transactions come from several sources, all but one of which are
computer-generated. The update program, INVUPDAT, does not distinguish bet-
ween sources. The lower half of Figure 3.6 has a general flowchart of this
phase. The system is described below in terms of its inputs, processing and
outputs.

INVENTOR.IMASTERn. The INVS master files have the same key fields
as the data master files and, in fact, the latest IMASTER contains:
- One observation for each observation on the data
NEWMASTER, plus

Digitized by GOOS[(’,

- 90 -

- One cbservation for each observation which has been deleted from
the data master files.

The IMASTER data fields are:
- DATEARR -- date the data form arrived
- INPUTDAY - date and time data observation was input by program DIP

- UPDATDAY - date and time the observation was originally added to
NEWMASTER by the EDUPDAT progrem.

- CHECKDAY - Date and time the data observation was most recently

checked for data errors by EDUPDAT

- CORRDAY - Date-time the data observation was most recently

corrected by EDUPDAT.

- DELDAY -- Tate-time the data observation was deleted from the

the master file by EDUPDAT.
(missing value if data record not deleted).

- ONMASTER - Date and time the data observation was most recently

observed by EDUPDATE to be on the data MASTER file.
(This should be the date-time of the most recent
execution of EDUPDATE unless the observation has
been deleted).

- CLEAN - a Boolean variable with value 1 if all variables on

the data MASTER observation have status 'B' or 'é'.
Otherwise CLEAN = 0.

When a new observation is added to IMASTER by an arrival record, most
of the fields, representing dates of events which have not yet happened, will
have missing values. As transactions come from various stages of processing
the missing values. (The missing values will be replaced with real date-
time.)

B.INVI¥m. The INVS transaction dataset has the same key variables
as IMASTER, and the same sort sequence. The other variables in the trans-
action file depend upon the source of the transaction records. One can
review the descriptions of those components to find the detailed descriptions

[

Digitized by GOOS[Q

- 91 -

of INVS transaction files.

INVUPDAT is a straightforward UPDATE program which also checks for
INVS transaction data errors, MASTER file update errors, and produces reports
on the status of data processing. These reports are described in the follow-
ing paragraphs. By examining the output reports one can easily determine
the structure of the program.

INVUPDAT STATUS REPORTS. INVUPDAT produces several tables of the
following general format:

Arrival DIP UPDATE CHECK CORP

Arrival XX XX XX XX XXX !
{ i
§ DIP b S o S 0 S .+ o
— |
n
| UPDATE XK XX XXX !

i

CHECK K XK ;

!
CORR XK !
!

Several types of entries are made in this type of table. For example, one
tabulation is the average "transit times', i.e., time to proceed from step
X to gtep Y. (E.g., in the first colum, from Arrival to DIP, Arrival to
UPDATE, etc.) Other statistics of interest are the maximum transit times,
standard deviation of transit times, etc.

Digitized by GOOS[(’,

- 92 -

Another type of table is as follows:

Stage Number of observations

! Processed Overdue Lost

Arrival _— _— !
DIP

Update

Here, 'overdue' means that a form has taken too long to progress from one
step to another. The actual criteria for 'overdue' status are based on
experience with the system.

INVPDAT ALARMS. The INVUPDAT STATUS REPORTS tell project management
how many forms have problems; the ALARMS printout lists the identification
of the forms which have been determined, in this run, to have problems (be
overdue or lost). Typically only cne ALARM is issued for each problem which
arises. If ALARMS were created for each problem on each update, the data
manager would be inundated with redundant ALARMS and they would lose their
value.

In addition to these reports, project management may specify other
reports to be produced regularly by INVUPDAT. Special purpose reports are
also prepared on a regular basis (each three months, for example) or on a
special basis, using IMASTER as a data file and the SAS statistical analysis
capabilities.

Digitized by GOOS[G

- 93 -

12. The Error Correction Subsystem

The error correction subsystem is basically a human subsystem. Error
messages are generated by EDUPDAT. Humans process the messages, determine
corrections, key and verify the correction data. The correction DIP program,
CORRDIP, is executed to produce a SAS correction transaction dataset and check
the correction data for errors. The results printed by CORRDIP are carefully
examined to make sure that the corrections do not introduce errors into the
data file. If errors are found, the CORRECTION DATA are corrected and CORRDIP
is rerun. This process is repeated until it is determined that the correction
transactions are entirely correct. Only then is the correction transaction
file released to the EDUPDAT program.

As noted, the Error Correction Subsystem is a human system; its design
and implementation is a problem in human engineering. The factors which af-
fect 1ts success are the same factors which have a major effect on the success
of the entire data management project:

1. Good human engineering

2. Good documentation

3. Good training of operational personnel

4. Good people management

5. Obtaining operational personnel who are good at giving
proper attention to detail

6. Having available adequate and appropriate resources:
time, space, money, people, hardware, software.

The software problems are not difficult--people problems are crucial. This
is true of the operation of the entire data management process.

(Note: This section is incomplete. Additional text will be provided at a
later date.)

13. The Quality Control Subsystem

(Note: This section is not yet available; it will be produced at a later
(b.ten - M, 08 Febo 800)

Digitized by GOOS[Q

- 9y -

14. Data Security

(Note: This section is not yet available; it will be produced at a
later date --
RWH, 08 Feb. 80)

Digitized by GOOS[G

REFERENCES

BROOKS, F. P. (1975). The Mythical Man-Month, Reading Mass. Addison-
Wesley Publishing Campany, 1975.

HEIMS, R. W. (1972). The Lipids Visit II Data Management System.
Documentation at the Central Patient Registry, Lipids Research
Clinics Program, Department of Biostatistics. University of
North Carolina at Chapel Hill.

HEIMS, R. W. (1978). An Overview of Research Data Management with
special emphasis on current problems. Proceedings of the ASA
Section on Statistical Computing, 1978. The American Statistical
Association, Washington, D.C.

HEIMS, R. W. (1979), CHRISTIANSEN, D. H., GALLAGHLR, P. N. & MORRIS-
SEY, L. J. Designing file structures for longitudinal research
data. Proceedings of the American Statistical Camputing Section,
1979. The American Statistical Association, Washington, D.C.

METZGER, P. W. (1973). Managing a Programming Project. Englewood
Cliffs, N. J. Prentice-Hall, Inc., 1973.

SAS79. SAS User's Guide, 1979 Edition. The SAS Institute Inc.,
Wesley Publishing Company, 1975.

Digitized by GOOSIG

