

INSTITUTO NACIONAL DE RECURSOS HIDRAULICOS (INDRHI)

INSTITUTO INTERAMERICANO DE COOPERACION PARA LA AGRICULTURA (IICA)

PROYECTO DE DESARROLLO AGRICOLA SOSTENIBLE EN SAN JUAN DE LA MAGUANA

CONSULTORIA EN ESTUDIO Y DISENO DE LA RED DE DRENAJE Y RECUPERACION DE SUELOS

INFORME FINAL (SEGUNDO BORRADOR)

RESPONSABLE:
Ing. Narciso Santana (consultor privado)
Ing. Gilberto Reynoso (INDRHI)

Santo Domingo, D.N. 29 de febrero del 1992

> UNIDAD DE DOCUMENTACION PARA LA PREINVERSION

11CA P11 1

BREENE

INDICE

	Pag.
RESUMEN EJECUTIVO	1
CUADRO SINOPTICO	4
1 INTRODUCCION	5
1.1 Antecedentes generales	5
1.2 Proposito de la consultoria	6
2 DIAGNOSTICO DE LA SITUACION ACTUAL	7
2.1 Analisis de los factores que originan el problema de drenaje y salinidad	7
2.1.1 El sistema de drenaje superficial	7
2.1.2 Drenaje subsuperficial	10
2.1.3 Fluctuaciones del manto freatico	11
2.1.4 Profundidad del estrato impermeable	12
2.1.5 Caracterización del problema de salinidad de los suelos y las aguas	13
2.1.6 Calidad del agua de riego	14
2.1.7 Calidad del agua freática	15
2.1.8 Salinidad de los suelos	18
2.2 Influencia del mal drenaje y la salinidad en los suelos y los cultivos	20
2.2.1 Suelos del årea afectada	21
2.2.2 Comportamiento de los cultivos	22
2.3 Aspectos operativos e institucionales	23
2.3.1 Antecedentes	23
2.3.2 El cultivo de arroz	24
2.3.3 Operación y mantenimiento	25

•		
•		
		•
		•
		1
		•
		1
		1
		ļ
		•
		ı

2.4 Evaluación de los resultados del área piloto de drenaje con tuberias
2.4.1 Descripción del ensayo de recuperación 25
2.4.2 Balance de agua
2.4.3 Balance de sales
2.4.4 Evaluación del sistema de drenaje 30
2.4.4.1 Generalidades
2.4.4.2 Fluctuaciones del manto freåtico 31
2.4.4.3 Espaciamiento y profundidad de los drenes
2.4.4.4 Comportamiento de los tubos y materiales filtroprotectores
2.4.4.5 Efecto del dren colector
2.4.4.6 Conductividad hidrāulica
2.5 Jerarquización de las áreas con problemas de drenaje y salinidad
2.5.1 Indices de jerarquización de los problemas de drenaje y salinidad
2.6 Conclusiones
2.7 Recomendaciones 39
3 ESTRATEGIA Y DIMENSIONAMINETO 42
3.1 Concepción del subproyecto
3.2 Elementos operativos
3.2.2 Control de la salinidad
3.2.3 Subsolado
3.2.4 Aplicación de mejoradores
3.3 Metodologia para dimensionar las metas y costos del subproyecto
3.4 Objetivos y metas
3.6 Interrelaciones con otras acciones del proyecto

	·	•
		1
1		•
1		
		I
		•
		_
	1	
ì		
		_
	· ·	
	1	
		ı
		_
	1	•
		1
		•
		1
		1
		1

3.7 Beneficiarios 48
3.8 Descripción de las acciones propuestas 48
3.8.2 Análisis técnico de alternativas para seleccion de acciones
4 ORGANIZACION INSTITUCIONAL
5 EJECUCION
5.2 Tendido de drenes 56
5.3 Labores y enmiendas 57
5.4 Lavados 57
5.5 Cronograma de ejecución
5.6 Programa de inversiones 58
6 JUSTIFICACION DE LAS ACCIONES PROPUESTAS 59
ANEXO
- RENDIMIENTO POR CULTIVO.NCUETSTA
- VOLUMEN A EXCAVAR EN DRENES SUPERFICIALES ABIERTOS
- VOLUMEN A EXCAVAR EN CAUCES NATURALES
- INVENTARIO DE OBRAS EN LOS DIFERENTES DRENES Y CAÑADAS
- ESTIMACION DE COSTOS DE ESTUDIOS, DISEÑOS Y SUPERVISION
- COSTO Y FINANCIAMIENTO. MEMORIA DE CALCULO

		·	
			•1 !

RESUMEN EJECUTIVO

El valle de San Juan es una región con un gran potencial para la producción agricola bajo riego, pero problemas de drenaje y salinidad limitan fuertemente el desarrollo de su potencial en una superficie de aproximadamente 3,075 ha. en la margen derecha del rio San Juan.

Las condiciones de drenaje y salinidad en las tierras del valle en su margen derecha han sido estudiadas y analizadas en los términos requeridos a esta consultoria para establecer un plan de drenaje y recuperación de los suelos afectados, que defina la metodología a seguir en la implementación del plan, que tipo de organización y equipos se necesitarian, y cuales serian los costos para la ejecución del plan. El propósito del plan es recuperar los suelos afectados y revertir la tendencia a salinizarse de las åreas normales y/o moderadamente afectadas.

La primera fase del trabajo consistió en caracterizar en forma preliminar los factores contribuyentes a los problemas de drenaje y salinidad, determinândose como los de mayor responsabilidad (ver cuadro sinóptico) los siquientes:

- 1.- La recarga de agua inducida con la deficiente aplicación del agua de riego.
- 2.- La incapacidad de los suelos del valle para poder evacuar una recarga de agua determinada a través de su perfil.
- 3.- Falta de facilidades (drenaje interno) para ayudar el deficiente drenaje natural que tienen los suelos.

	1
	1
	1
	1
•	
	1
	•

- 4.- Bloqueos de los cauces naturales existentes.
- 5.- Geologia favorable para el desarrollo de manto confinado, con presencia de elevadas concentraciones de sales solubles.

La conclusión principal del diagnóstico es que se necesita mejorar el sistema de drenaje existente y expandirlo, considerando la incidencia de los factores arriba señalados. Además, reducir las pérdidas de agua que se producen con el riego.

Atendiendo a las conclusiones y recomendaciones del diagnóstico, se elaboró un primer esquema con las acciones de drenaje recomendable, el cual se fué mejorando a medida que se van obteniendo nuevas informaciones de campo. El plan final a que se ha arribado, contiene las acciones necesarias para solucionar los problemas encontrados. Esas acciones, consisten en :

- 1.- Readecuación de cauces naturales existentes y su incorporación a la red de drenaje principal del valle.
- 2.- Restitución operacional de cauces naturales bloqueados.
- 3.- Rehabilitación, evaluación, mejoramiento y ampliación del sistema de drenaje construido, principalmente profundizar el nivel base de ello.
- 4.- Diseñar un sistema de drenaje subterrâneo a base de tuberia de PE que funcionaria integrado al sistema principal abierto.

		[
		1
		•4
		l ,
		i
		I ,
	•	
		[
		ſ
		ſ
		-1
	·	ľ
		1
		1
		1
		1

Las acciones indicadas han sido estudiadas y diseñadas, y se acompañan de los correspondientes costos para su ejecución, los cuales ascienden a US\$ 3,455,016.

En los aspectos de lavados de suelos se han definido criterios y normas para realizarlos y los cultivos más recomendables a establecer en las diferentes etapas del proceso.

Se recomienda que la construcción del sistema de drenaje parcelario y la adecuación de cauces naturales existentes se ejecute por administración bajo la responsabilidad del INDRHI, con asesoramiento contratado. La red mayor de drenaje y obras complementarias sean licitadas y que las acciones de preparación y lavados de suelos sean realizadas por los propios agricultores, con asesoramiento técnico especializado.

		1
		1
		1
		i
		1
		!
		•1 •1
		1
		1
		1
		1
		1
		1

Cuadro sinôptico

Problemas identificados	Acciones propuestas	Coste estimado	Esquena de de ejecución	Impacto esperado
	- Construcción de un sistema de drenaje parcelario y principal - Reducción de las pérdidas de agua con la aplicación del riego.	3,374,652	En una primera etapa const. del sistema principal abierto sobre el abatimiento del manto freàtico y en una segunda etapa la const. del sistema parcelario.	Abatimineto de los miveles freáticos hasta una
con elevadas	- Const. de pozos de alivios en el fendo de los drenes abiertes		porforarán pozos con profundidad de 3 a 5 m. en la plantilla.	Reducción de la participación del agua confinada en la recarga del mante freático.
	- Restitución relativa de los drenes naturale existentes.	•	ejecución del sistema de drenaje, se adecuarán los cauces naturales considerados.	Efecto significativo en el abatimiento de los niveles freáticos.
4 500 ha. de tierras ensalitrdas	- Lavado de los suelos nivelación, aplicación de ennienda y subsolado.		Se iniciarán los lavados cuando los niveles freáticos hayan descendido hasta 1.5 m. de profundidad Nivelación de las tierras Subsolado Aplicación de emmiendas Preparación de suelo Lavado.	Eliminación de las sales acumuladas en el porfil del

		1
		1
		l 1
		1 1
		1
		1
		•
		1
		1
		1
		i 1
		1

1.- INTRODUCCION

1.1.- Antecedentes generales

El gobierno Dominicano y el Banco Interamericano de Desarrollo firmaron, a principio de la década de los ochenta el acuerdo de préstamo 570/SF - DR, para ejecutar a través del Instituto Nacional de Recursos Hidraulicos el proyecto de riego en la zona de influencia de la presa de sabaneta. Dicho proyecto tenía como objetivo el aprovechamiento racional de los recursos de suelo, clima y agua, para incrementar la producción y productividad de los cultivos y con ello el nivel de ingresos de unas 3,200 familias campesinas. Sin embargo, restricciones impuestas por problemas de empantanamiento y salinidad en una superficie de 3,075 ha. de suelos del proyecto han impedido la materialización plena de los objetivos propuestos.

La presentación del problema de drenaje en algunos sectores del valle es más antiguo al inicio del proyecto de riego sabaneta. La magnitud de los problemas de drenaje y salinidad observables ahora en el valle, están vinculados a la recarga generada por los huracanes David y Federico en el año 1979 y fundamentalmente a la forma en que se ha estado manejando el recurso agua en la actividad agricola. El problema de drenaje ha evolucionado progresivamente y con el la salinidad, como resultado de la falta de tratamiento adecuado para eliminar las causas que lo originaron: rotura del equilibrio hidrológico local de los suelos.

•

1.2.- Proposito de la consultoria

El propòsito de esta consultoria es la de preparar un plan racional que permita llegar a soluciones tangibles en la tarea de restituirle la capacidad productiva a la superficie de tierra agricola (3,075 ha.), que ahora tienen reducido su potencial de producción, debido a los problemas de drenaje y salinidad que las afectan y además, evitar que los problemas avancen hacia nuevas áreas de tierras normales.

Se estableció un cronograma de actividades para realizar los trabajos en tres meses, con una primera etapa de tres semanas para diagnóstico de la situación actual y análisis de la información disponible y una segunda etapa de diez semanas para formulación del subproyecto con diseño, especificaciones y costos de las acciones propuestas.

Como se evidencia en la propuesta presentada más adelante, este subproyecto tiene una relación estrecha con los subproyectos de desarrollo tecnológico y crédito agropecuario y dado que algunas acciones planteadas aqui, deben ejecutarse como complemento de otras planteadas en aquellos, hemos mantenido una interacción viva con las consultorias responsables de esos subproyectos.

2.- DIAGNOSTICO DE LA SITUACION ACTUAL

2.1.- Análisis de los factores que originan el problema de drenaje Y salinidad.

En base a los estudios y planos elaborados con la información disponible, se precisan los factores que en forma directa o indirecta originan los problemas de drenaje y salinidad en los suelos irrigados con el sistema J.J. Puello en la margen derecha del río San Juan.

2.1.1.- El sistema de drenaje superficial

El årea de influencia del sistema de riego J.J. Puello tiene un sistema de drenaje natural bien desarrollado, que ha reducido su capacidad de funcionamiento, debido a la obstrucción de los cauces por acumulación de sedimentos, crecimiento de vegetación acuática y en algunos casos presencia de obstaculos artificiales construidos (represamientos). Adicional al sistema de drenaje natural, el proyecto de construcción consideró la necesidad de drenes artificiales superficiales en su nivel principal, pero con menor atención en la disposición de los volumenes de agua de coleo originados por la aplicación excesiva de riego.

En el cuadro No. 1 se consignan algunas características del sistema de drenaje superficial existente. Como puede observarse en dicho cuadro gran parte del sistema tiene un nivel base poco profundo, ya que el mismo ha sido concebido para evacuar los excesos de agua superficiales, producto de las precipitaciones pluviales y del riego.

		·	-J
			1
			1
			1
			1
			1
			1
			•

Cuadro No. 1. Algunas características del sistema principal de drenaje.

Zona del proyecto		Longitud (Km)	Profundidad (m)	Situación actual
11	Zabala 1	5.46	1.0 - 1.8	Represado para usar las aguas para riego. Obstruido por malezas y sedimentos.
	Zabala 2	2.82	0.5 - 0.7	Obstruido por malezas y sedimentos.
	Zabala 3	0.71	0.5 - 0.7	Obstruido por malezas y sedimentos.
	Arroyo la Ceiba	3.40	1 mt. ò menos. >1 mt. aguas abajo de la represa.	Represado para riego.
	Arroyo Pedro Corto	2.10	Poco profundo.	Sedimentado.
	Cañada columna	3.40	< 2.0 m. en la parte media.	Nuy sedimentado. Represado.
	Cañada pajonal	1.20	> 2.5	Buena descarga.
7	La cachimba	2.6	2.5	Buena descarga.
	Sub-colector la cachimba	0.91	1.0	Con maleza.
	Sanchez - La urca	3.1	1.35	Obstruido por malezas y sedimentos.
	Lat. la urca	1.06	0.75	Con maleza.
	Lat. Sanchez	2.0	1.25	Descarga restringida.
	Alexis	0.82	2.25	Buena descarga.
	Narciso Dotel	0.40	2.25	Buena descarga.
	 Pedro Martin	1.70	2.25	Buena descarga.
9	Intercepter las charcas	 - 	Adecuada	Buena.
	Interceptor las	- !	Adecuada	Buena.
	Lambedero	6.2	0.65 - 1.30	Descarga restringida.

	1
	•
	,1
	1
	1
	1
	ı
	1
	1
	M
	1
	1
	1
	1
	1
	1
)
	1

continuación cuadro No. 1

i i	PIMUGCI	San Antonio	; 2.2	3.2	; Buena descarga.	
!	10	Interceptor las charcas 3	-	Adecuada	Buena.	
1		Interceptor las charcas 5	-	Adecuada	Buena.	
		Interceptor las charcas 6	-	Adecuada	Buena.	
		El rancho	-	Adecuada	Buena.	
!		DS 10-01		Adecuada	Buena.	
!	8	Sanate	¦ -	; Poco profundo	; Buena.	!
1	6	; Cerro montoso		Poco profundo	Descarga restringida.	1

Notas: 1.-Arroyo Loro y la cañada la cachimba que constituyen el sistema principal a través de los cuales drenan las zonas 7, 9 y 6 hacia río San Juan tienen profundidad y capacidad de conducción adecuada.

2.- Arroyo calabozo y arroyo la ceiba constituyen el sistema principal de descarga que drena la zona 11 del proyecto hacia el río Yabonico. El primero tiene buena profundidad y capacidad de conducción y el segundo está represado para riego y aguas arriba del represamiento no tiene profundidad adecuada, debido a la sedimentación.

J

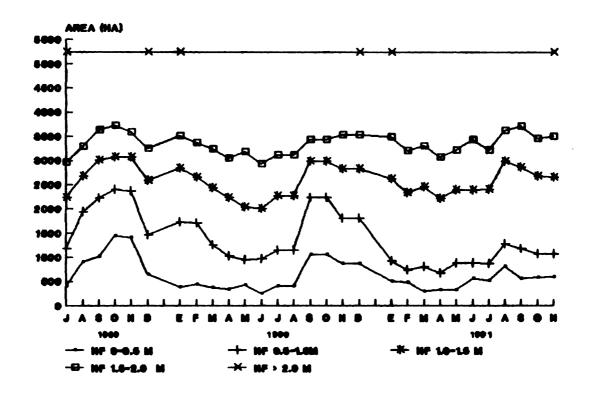
2.1.2.- Drenaje subsuperficial.

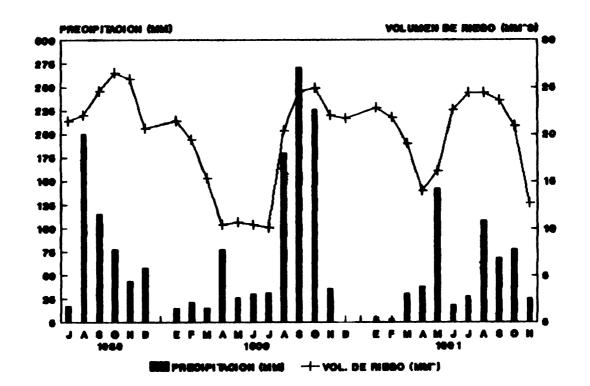
Los aspectos que contribuyen a la recarga de los mantos freáticos, así como aquellos que interfieren a la descarga, se precisan y valoran con mayor exactitud en el análisis realizado sobre las variaciones de los mantos freáticos, la estratificación del suelo y a través del balance de agua y sales, realizado en el campo piloto, localizado dentro del área afectada por mal drenaje y salinidad. En el cuadro No. 2, se presentan los factores principales, identificados como causantes del problema de drenaje interno.

Cuadro No. 2. Factores que originan el problema de drenaje.

Factores	Externos		Internes	
	Superficiales	Subterrâneos	Superficiales	Subterr ånces ;
Fuentes de agua		1 Corrientes ¦ subterrâneas de laderas altas	1 So bre riego	1 Filtraciones on canales 2 Afloramientos de mantos confinados
Obstacu- los		1 Ge ologia desfavorable	1 Pérdida de capacidad de los cauces naturales 2 Mala conservacion de colectores 3 Poca profundidad de colectores existentes	de los suelos y sub- suelos 2 Altos niveles piezométricos de

2.1.3.- Fluctuaciones del manto freático.


Las fluctuaciones del manto freático a través del tiempo, tal y como puede observarse en la figura No. 1, permite precisar los siguientes aspectos:


- a) De un årea total de 5235 ha. estudiadas, 3072 ha. presentan problemas de drenaje debido a que el manto freåtico se mantiene a menos de 1.5 m. de profundidad y alrededor de 700 ha. adicionales son potencialmente suceptibles de afectarse, por tener mantos freåticos a profundidad menor de 2.0 m. las åreas afectadas con mantos freåticos cercano a la superficie del suelo se localizan principalmente en la zona 7, y 11 y en menor proporción en la 9.
- b) Los meses donde se presentan las mayores àreas con mantos freâticos más cercanos a la superficie del suelo y de mayor duración, corresponden a Agosto, Septiembre, Octubre y Noviembre. Mientras que en los meses correspondiente al periodo Enero Abril, se presentan las àreas con mantos freâticos más profundos. c) Existe una interacción de los mantos freâticos altos con los meses de mayor derivación de agua para riego.

Las precipitaciones pluviales, aunque se producen en màxima cantidad en el periodo Agosto - Octubre, no influencian las variaciones del manto freàtico.

I

FIG. No. 1 VARIACION DE LOS NIVELES FREATICOS EN EL TIEMPO Y SU RELAGION CON LA PRECIPITACION Y LOS VOLUMENES DE RIEGO.

ŧ

d) La fuente principal de alimentación del manto freático la constituye las pérdidas de agua durante el riego del cultivo de arroz, cuya siembra se inicia a partir de la segunda quincena de Junio y se cosecha entre la segunda quincena de Septiembre y la primera de Diciembre.

La existencia de altos niveles piezométricos de mantos confinados se ha identificado como otra posible fuente (no cuantificada) de alimentación del manto freático.

- e) La tendencia y dirección del movimiento del flujo de agua subsuperficial es en la zona 11, hacia el arroyo la ceiba, mientras que en las zonas 7 y 9, el flujo tiene una dirección definida hacia el extremo Sur Este del arroyo loro.
- 2.1.4.- Profundidad del estrato impermeable.

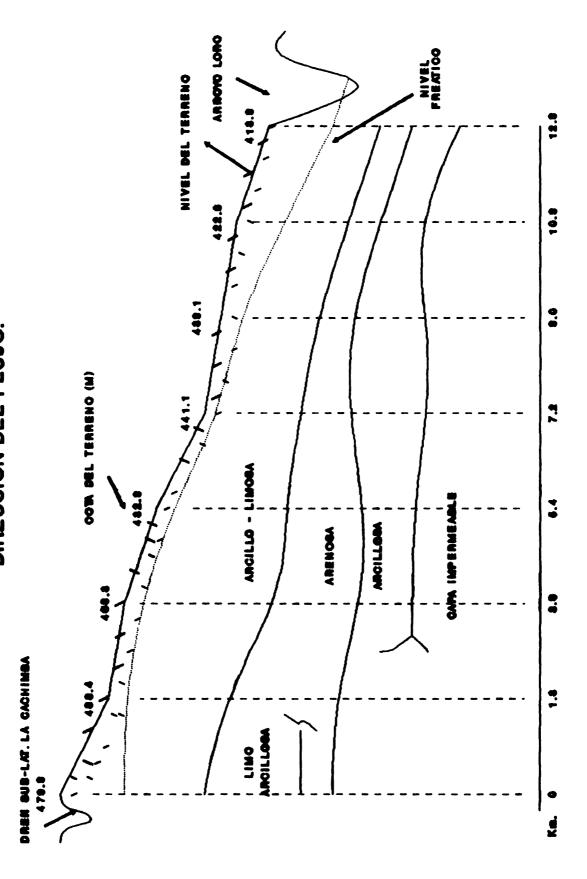
En los suelos del valle de San Juan predominan los componentes mecânicos limo y arcilla en más de un 80 % en todo el perfil, confiriendole a los suelos un movimiento muy lento del agua, tanto en sentido horizontal como vertical.

En las figuras No. 2 y 3, se puede observar la disposición que tienen los estratos de suelo, tanto en la dirección del flujo como perpendicular a él. En profundidades mayores de 2.5 m. subyace una capa de suelo que limita el movimiento gravitacional del agua, y que para fines de tratamiento del problema de drenaje se considera como barrera impermeable. Se observan también en las figuras, que el manto freático sigue una dirección más o menos

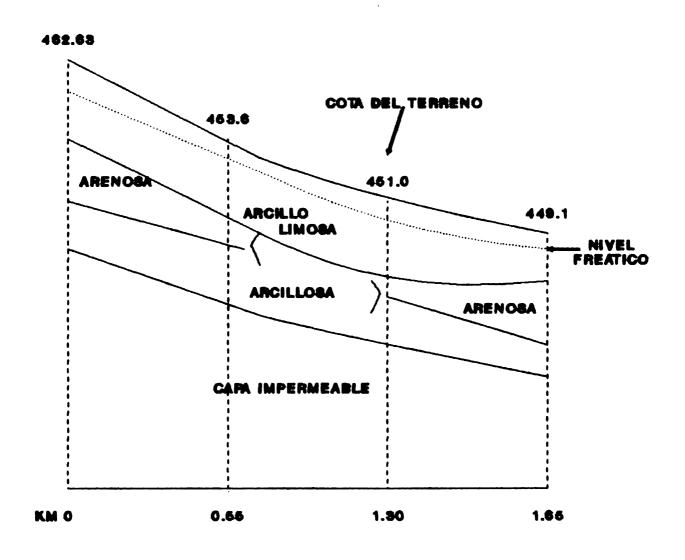
			[
	•]•
			[
			[
			[
1]
			•[[
			1
			•
			1

uniforme a través del estrato arcillo - limoso, que ocupa la parte superior del perfil del suelo y solamente en las proximidades de cauces profundos, experimenta descensos notables.

Un fenómeno importante para el tratamiento del problema de drenaje, puesto en evidencia en las observaciones de campo, es la presencia de altos niveles piezométricos de mantos confinados ligados al manto freático. La carencia de estudios piezométricos impiden definir las áreas con manto freático sujeto a presión y su importancia en superficie y magnitud dentro de ella, así como las fuentes que producen y la capacidad de aportaciones de ella.


2.1.5.- Caracterización del problema de salinidad de los suelos y de las aguas.

A pesar de que solamente se dispone de información cuantificada de la magnitud del problema de salinidad en unas 440 ha. de la zona piloto que desarrolla el centro de manejo de aguas, las observaciones de campo y las informaciones suministradas por agricultores evidencian que la salinidad afecta un årea mayor de suelo.


La presencia de sales solubles en los suelos agricolas del valle de San Juan (Margen derecha) se puso de manifiesto luego del paso de huracanes David y Federico en 1979, que provocaron ascensos notables de mantos freáticos. En la actualidad, el fenômeno se ha esparcido, afectando una superficie considerable de suelo, principalmente en las zonas 7, 9 y 11 del proyecto.

	ſ
	L
	ſ
	L
	[
	ſ
	[
	ſ
	•
	1
	1

FIG. 2 PERFIL ESTRATIGRAFICO Y NIVEL FREATICO EN DIRECCIÓN DEL FLUJO.

FIG 3 PERFIL ESTRATIGRAFICO Y NIVEL FREATICO PERPENDICULAR A LA DIRECCION DEL FLUJO

[

Debido a que se dispone de información cuantificada sobre la magnitud del problema de un årea reducida, se analiza un conjunto de factores que permiten caracterizar y jerarquizar el orden a proponer para la aplicación de normas correctivas. El análisis de dichos factores se presentan a continuación:

2.1.6. - Calidad del agua de riego.

El agua de riego es un importante factor de salinización del suelo, cuando contiene concentraciones de sales solubles superiores a 0.5 gr/Lt. Las aguas que se derivan de la presa de Sabaneta para el riego de los suelos en la margen derecha, son de buena calidad, con un contenido de sales solubles variable entre 0.10 y 0.13 gr/Lt. En cuanto a su composición química no a de esperarse efectos nocivos en los suelos y cultivos. El cuadro No. 3 contiene el análisis químico de dichas aguas.

cuadro No. 3. Anàlisis quimico del agua derivada de la presa de Sabaneta.

Cloruros (CL $^-$) = 0.35 maq/Lt.

Sulfatos $(504^{2}) = 0.00 \text{ meq/Lt.}$

Carbonatos (CO3 = 0.00 meq/Lt.

Bicarbonatos (CO3H⁻) = 0.30 meq/Lt.

Calcio (Ca^{++}) = 0.81 meq/Lt.

Magnesio $(Mg^{++}) = 0.55 \text{ meq/Lt.}$

Sodio $(Na^+) = 0.22 \text{ meq/Lt.}$

PH = 8.4

-1 -

cont..

Conductividad electrica = 160 micromhos/cm (0.1 gr/Lt.)

RAS = 0.16

Clasificación = $C_1 S_1$

2.1.7.- Calidad del agua freatica.

Las aguas freáticas del valle de San Juan, son de muy mala calidad, con concentraciones de sales solubles que alcanzan hasta 11.5 gr/Lt. Debido a estos altos contenidos de sales solubles y a la composición química de las mismas, con altas cantidades de cloruro de sodio, pueden provocar acumulaciones importantes de sales en la zona radicular del suelo con el ascenso capilar desde el manto freático poco profundo.

En el cuadro No. 4, se presentan los resultados del análisis hecho a muestra tomada en el pozo No. 4, localizado en Magueyal. Su alto contenido de cloruros de 38 %, de sodio 32.42 meq/Lt. y el indice de magnesio superior al 50 %, indican que se trata de agua que ha entrado en contacto con formaciones de suelo de origen marino.

Cuadro No. 4. Análisis químico del agua del pozo de observación No.4.

Cloruros (Cl $^-$) = 19.92 meq/Lt.

Sulfatos $(S04^{2}) = 23.28 \text{ meq/Lt.}$

Carbonatos (CO3) = 0.60 meq/Lt.

Bicarbonatos (CO3H = 8.10 meq/Lt.

Calcio $(Ca^{++}) = 8.28 \text{ meq/Lt.}$

Magnesio $(Mg^{++}) = 10.64 \text{ meq/Lt.}$

Sodio $(Na^+) = 32.42 \text{ meq/Lt.}$

· ; —

. _

1 -

1 -

. –

 $Ca^{++} + Mg^{++} = 18.92 \text{ meq/Lt.}$

Conductividad electrica = 5190 micromhos/cm

Anålisis efectuado por la división de hidrogeología del INDRHI, el 16-Febrero-1989.

A.- Comprobaciones

 $\mathbf{a_1}$ - Equivalencias entre aniones y cationes totales

Aniones = 51.90 meq/Lt.

Cationes = 51.34 meq/Lt.

Diferencias observadas = 51.90 - 51.34 = 0.56 meq/Lt.

Se considera como agua quimicamente equilibrada.

a₂- Equivalencias entre conductividad electrica y cationes totales

Cationes totales = 51.34 meq/Lt.

L Conductividad electrica = 5190 micromhos/cm

CE 5190

Coeficiente de proporcionalidad = ----- = 101.09

cationes 51.34

Resulta un coeficiente que se encuentra en el limite de la región de aceptación (80 - 115).

a₃- Clase

Conductividad electrica = 5190 micromhos/cm

RAS = 23.94

Clase = C₄ S₄

Muy alta salinidad y muy alta en sodio.

 a_A - Carbonato de sodio residual (CSR)

La presencia de iones, carbonatos y bicarbonatos afecta el RAS de la solución del suelo.

CSR=(CO3 + CO3H) - (Ca + Mg)=(0.60 + 8.10) - (8.28 + 10.64) < 0 No hay riesgo de sodificación

Resulta un agua de mala calidad

a₄- Indice de magnesio

Agua peligrosa

. .

. —

. ._

. 🖚

, -

. 🖚

, -

a₇- Proporción de carbonatos y sulfatos

Ca + Mg = 18.92 > CO3 + CO3H = 8.70

Ca = 8.28 < CO3H + SO4 = 31.38

Pertenece a clase II

En base a la salinidad de las aguas de la red de 155 pozos de observación del manto freático, se ha elaborado el mapa

de salinidad (ver mapa No.2), que conjuntamente con el de profundidad critica del manto freåtico permitirà establecer criterios para definir las zonas que necesitan acciones inmediatas de drenes parcelarios.

2.1.8.- Salinidad de los suelos.

Se dispone de información cuantificada sobre la salinidad de los suelos en las 440 ha. de la zona piloto de drenaje y recuperación que opera el centro de manejo de aguas en el sitio de Magueyal. En las áreas restantes se observa la presencia de sales en los suelos, pero se desconoce la magnitud de las afectaciones.

De acuerdo con los datos suministrados, la salinidad inicial en la zona piloto, es alta en la parte superior del suelo (14.0 mmhos/cm), descrece ligeramente hasta 7.5 mmhos/cm a una profundidad de 72 cm; alcanzando concentraciones máximas de 14.2 mmhos/cm a una profundidad de 105 cm. Sin embargo, las observaciones hecha en campo parecen contradecir estos resultados, ya que se nota la acumulación de concresiones de sal sobre la superficie (ver fotos en la siguiente página), lo cual indica valores altos de la salinidad en los suelos.

Sobre la presencia de sodio intercambiable no se dispone de información, pero se observan sintomas en los suelos que indican su presencia en niveles incipientes.

Para precisar mejor sobre el aspecto de salinidad de los suelos, se procedió a tomar muestras de suelos que se analizan en el laboratorio.

1.7 was Tisberg, a day 10000 Navigo Dominga, 5.74.

Remarka Instructura Praes Roema (1900) de Prancesa, se Pares de Assilato (200), 2000

Now wile to the form of the fo

Zaeting community Moreov

_ 1

. 1 .

. 1.

٠. •

The capabilities of the city of the extension with a limited and the capability of t

Experiming the compact to a start product the start of th

ng. Vardish Santame

to agree 1

.

Foto No. 4 Area piloto de manejo de aguas. Concresiones de a en superficie.

el

de

Los efectos son fácilmente perceptibles y en las situaciones menos desfavorables se traducen en un incremento en los costos de las labores agrícolas y en una disminución del potencial productivo.

Si las fuentes y las causas que originan los excesos de humedad y las sales en el suelo no reciben un tratamiento correctivo oportuno, el proceso de acumulación de sales en el perfil continuará con una velocidad variable según el grado de aridez del clima y consecuentemente las propiedades físicas y químicas del medio tendrán un deterioro progresivo.

La fuente de los excesos de humedad y la salinidad en los suelos de la margen derecha del rio San Juan son acuiferos confinados aparentamente no muy profundos y con apreciables concentraciones de sales disueltas. La altitud y relieve de este valle no sugieren la posibilidad de existencia de otra fuente.

Las causas que han dinamizado la aparición de este fenómeno son sin lugar a dudas : la introducción del riego, principalmente del arroz, el represamiento de los drenes naturales y artificiales, la operación y manejo deficiente del agua y el suelo y las características hidrodinâmicas del suelo mismo.

7[

2.2.1- Suelos del area afectada

Los suelos del årea afectada, tienen profundidades mayores de 3.0 m., pero su desarrollo ha estado condicionado por la hidromorfia permanente que tiene como manifestación evidente, la existencia de un horizonte (B) textural de un espesor que alcanza hasta los 3.0 m. con contenido de arcilla y limo fino hasta el 80 % y la ausencia total de estructura en todo el perfil de suelo.

El exceso de humedad en estos suelos impide el desarrollo de un ambiente microbiológico y la degradación de la materia orgânica, por lo cual no se generan en el medio los coloides orgânicos que son fundamentales en la estructuración.

La ausencia de estructura restringe considerablemente el movimiento del agua gravitacional, lo cual se traduce en una conductividad hidraulica muy baja y condiciones de aereación al interior del suelo muy desfavorables para la nacencia y el desarrollo radicular.

El aterronamiento y hendiduras de restraimiento visibles en Magueyal y la Urca son sintomas inequivocos de un suelo muy degradado y sin estructuración que esta sometido a procesos ciclicos de humedecimiento y desecación. Por la ausencia de estructura estos suelos se pulverizán fácilmente y son transportados hacia los bajos topográficos con el riego y la escorrentia superficial del agua de lluvia.

ſ		
_[
[
[
[
[
[
Ĺ		
[
ſ		
ſ		
1		
Ţ		
1		
Ĭ		
ď		

El transporte de sales del acuifero confinado hacia la parte superior del perfil se produce con mucha facilidad en los suelos del årea afectada que son predominantemente arcillosos. En los suelos con cobertura vegetal perenne el fenômeno se atenúa y se acelera en aquellos en que se hace una sóla cosecha por año.

Las afectaciones salinas más fuerte se localizan en los suelos de Magueyal y La Urca, mientra que en la Ceiba y Pedro Sanchez la salinidad es baja, pero los problemas de exceso de humedad afectan con igual intensidad.

2.2.2. Comportamiento de los cultivos

Los excesos de humedad y la salinidad en 3,075 ha. de suelos han impuesto fuertes restricciones a la mayoría de los cultivos. En 1,475 ha. de estas que están fuertemente afectadas sólo es posible cultivar arroz con rendimientos inferiores a 1.9 ton/ha. en la generalidad de los casos. En otras 900 ha. con grado de afectación mediano, se cultivan arroz, batata, maiz, y sorgo con mermas en los rendimientos de hasta un 50 % para el arroz y 70 % en la batata, maiz y sorgo. En las restantes 600 ha., los rendimientos del arroz se ven mermado en un 25 %, la habichuela en un 70 %, la batata en un 30 % y el maiz y el sorgo en un 50 %.

En cuadro No. 5, se presentan los niveles de rendimientos encontrados en las áreas afectadas. En el mismo se evidencia que el cultivo más sensible en las condiciones del proyecto lo es la habichuela y los más tolerantes son el arroz y la batata.

], [] ·

Cuadro No. 5 Niveles de rendimientos de los principales cultivos en las áreas afectadas.

Superf.	Grado de	Rendimientos en ton/ha			
afectada	afe ctación	arroz	hab.	batata	sorgo/maiz
1,475	Fuerte	1.9	_	_	
900	Medio	3.2	-	7.2	1.9
600	ligero	4.8	0.72	16.8	3.2
Restantes	Ninguna	6.4	2.4	24.0	6.4

En multiples casos, las cosechas se pierden en su totalidad, sobre todo cuando se producen precipitaciones importantes y de intensidad elevada, que provocan escorrentia superficial. Este fenômeno tiene su origen en la incapacidad de los suelos para infiltrar agua debido a su baja permeabilidad. En conclusión creemos que los perjuicios ocasionados por la humedad y las sales a los cultivos en el área afectada son mucho más severos que los presentados en el cuadro anterior que debe tomarse sólo como un indicio y en modo alguno como una cuantificación de las pérdidas.

2.3.- Aspectos operativos e institucionales concurrentes

2.3.1.- Antecedentes

En la fase de planificación para la explotación bajo riego de las áreas afectadas se generaron las informaciones básicas que permitieron caracterizar los suelos como: muy pesados y profundos, poco desarrollados, de velocidad de infiltración muy baja y fuerte capacidad de retención.

, [No se previò, no obstante la posibilidad de aparición de los problemas de empantanamiento con la introducción del riego y no se tenían indicios de la presencia de sales en el subsuelo.

Es obvio, por tanto, que no se hayan tomado oportunamente las previsiones normales para estos casos para contrarestar la situación de empantanamiento y ensalitramiento descrita anteriormente.

En efecto, el sistema de drenaje principal y secundario, se proyectó para evacuar exclusivamente los escurrimientos superficiales provenientes de las precipitaciones y los excesos de riego; el drenaje interno de los suelos no fue considerado; se permitió el cultivo del arroz y no se adoptaron las normas de manejo de suelo y agua imprescindibles en los tipos de suelos encontrados.

2.3.2.- El cultivo del arroz

Es bien sabido que el cultivo del arroz en los tipos de suelos descritos tiende a acelerar el proceso de degradación y ensalitramiento, debido a los elevados volumenes de agua utilizada. Esta realidad es conocida por todos, incluidos los mismos agricultores que la propician. En las áreas ha habido disposiciones institucionales tendentes a prohibir la siembra de este cultivo, pero han sido ignoradas y/o violadas por falta de coordinación interinstitucional y en todos los casos, se han adoptado por disminución en los volumenes de agua disponibles y no por los efectos negativos que tiene en los suelos y los otros cultivos.

T Los indices de productividad del cultivo del arroz que aparecen en el cuadro No. 5 indican que su rentabilidad en el årea afectada es muy baja, pero a pesar de esa realidad, los agricultores se mantienen atados a dicho cultivo por problemas de credito y comercialización.

Los agricultores de dichas åreas son mayormente beneficiarios de la reforma agraria, con predios de 2.0 y 2.5 ha., que no tienen recursos propios, ni otra posibilidad de obtener credito que no sea con los molineros de arroz con intereses de hasta 120 % anual.

2.3.3. - Operación y mantenimiento

Los controles en el suministro del agua no son adecuados y los drenes y cauces existentes no reciben mantenimiento con la celeridad requerida. La combinación de estos dos factores se traducen en una recarga considerable en los niveles freáticos por obstrucción de las salidas del agua de drenaje. Esta situación se ve agravada por la existencia de numerosos represamientos para reuso del agua de drenaje.

- 2.4.- Evaluación de los resultados del årea piloto de drenaje subterrâneo con tuberias
- 2.4.1.- Descripción del ensayo de recuperación.

En el årea de estudio, el manto freåtico inicialmente estaba a una profundidad de 0.1 - 0.5 m.. El clima es semi - årido y la agricultura depende completamente del riego.

Un ensayo de recuperación de suelo sålino se instaló en 9.38 ha., las cuales forman parte de un årea mayor, en la cual se ha instalado un sistema de drenaje. La parcela de

, [recuperación está equipada con 9 lineas de drenes parcelarios a una profundidad de 1.7 m. y espaciado a 50 m., con descarga en un colector abierto.

El suelo desde la superficie hasta una profundidad de 2.6 m. es de textura fina; las capas a mayor profundidad son más arcillosa y existen lentes intercalados de arenisca y algunos conglomerados gruesos.

Los suelos tomados en este experimento de recuperación representan los casos peores de salinidad y mal drenaje en la zona. La salinidad es elevada en la capa superficial del suelo (14 mmhos/cm), disminuye a media profundidad (7 mmhos/cm), para luego aumentar hacia el fondo del perfil (14.2 mmhos/cm).

No se hizo nivelación del terreno y el arado se hizo a una profundidad de 15 cm.

El agua utilizada para el lavado es de excelente calidad: CE=0.14 mmhos/cm y el RAS= 0.21 .

Primer cultivo de arroz

Del 10 de Julio al 30 de Noviembre de 1991 (140 días) se desarrollò el ciclo de arroz. La producción obtenida fue de 5ton/ha., la cual es considerada como excelente para la condicion existente.

En total se aplico 75415 m^3 de agua de riego y se registraron 307 mm. de agua de lluvia.

El cambio en el contenido de humedad del suelo, se consideró cero, debido aque el suelo estaba saturado por el manto freático.

	•
	•
	(
	,
	↓
	4
	•
	•
	•

El sistema de drenaje descargo 41040 m³ de agua y el promedio de la CE fué 3.0 mmhos/cm (=2.0 gr de sal por litro). El drenaje superficial descargo 22512 m³, con una CE=0.24 mmhos/cm (=0.16 gr de sal por litro).

Al årea ingresò como flujo lateral subterràneo 0.3 Lt./seg (valor estimado), con CE de 3.0 mmhos/cm..

2.4.2- Balance de agua.

Existe una relación entre el cambio en el contenido de sal en el suelo y la cantidad total de agua aplicada. Sin embargo, la cantidad total de agua aplicada no contribuye completamente a la desalinización del suelo; una parte se pierde por evapotranspiración y escorrentia superficial, previo a infiltrarse. Además, el agua que infiltra no siempre contribuye al lavado de las sales fuera del perfil del suelo, sino que solamente la fracción que percola a través del perfil del suelo hasta el nivel freático, lava las sales fuera de él.

La cantidad de agua percolada en el lavado, se calculó usando la siguiente expresión:

$$Pr = R + P - (Es + Et)$$

Donde :

 $R = Riego (m^3)$

P = Precipitación (m³)

Es = Escorrentia superficial (m^3)

Et = Evapotranspiración (m^3)

Pr = 75415 + 28796 - (22512 + 54873) = 26826 m³ = 290 mm.

- 2.4.3. Balance de sales.
- 2.4.3.1.- Balance de sales y agua.*

La expresión usada para estimar el balance de sales fué:

$$S = Sd + Ses - Ei - Ef$$

Donde :

S = Cambio en el contenido de sales en el suelo (gr/Lt.)

Sd = Salida de sal en el agua de drenaje (gr/Lt.)

*) Los datos sobre el balance deben precisarse en un próximo ciclo.

Ses = Salida de sal en el agua de escorrentia superficial (gr/Lt.).

Ei = Entrada de sal en el agua de riego (gr/Lt)

Ef = Entrada de sal por flujo lateral subterrâneo (gr/Lt.)

26826Sd = ---- × 2 × 10^{-3} = 5.7 tons. de sal/ha. 9.38

22512 Ses = ----- \times 0.16 \times 10⁻³ = 0.4 tons. de sal/ha. 9.38

75415 Ei = ----- \times 0.09 \times 10⁻³ = 0.72 tons. de sal/ha. 9.38

S = 5.7 + 0.4 - 0.72 = 5.38 tons. de sal/ha.

Es decir que 5.38 toneladas de sal por hectàrea fueron lavadas desde el perfil del suelo, durante el ciclo del cultivo.

2.4.3.2.- Balance de sales de acuerdo a análisi de laboratorio

La expresión utilizada para realizar el balance de

sales, usando los resultados del análisis del laboratorio,
es:

Cs = CE \times d.s \times Ps \times 0.66 \times 10 $^{-3}$

Donde:

Cs = Contenido de sal en ton./ha.

CE = Conductividad electrica del suelo en mmhos/cm.

d.s = Densidad del Suelo en gr./cm³

Ps = Porcentaje de saturación del suelo en %

 0.66×10^{-3} = Constante de conversión de la salinidad de mmhos a ton./ha.

La salinidad y demás caracteríticas iniciales y finales del suelo en la capa de 0.0 a 30 cm., ântes de iniciar el proceso de lavado y después de finalizado, eran:

Antes Después

CE = 14 mmhos/cm. CE = 7.8 mmhos/cm.

d.s = 1.52 gr/cm^3 d.s = $1.52 = \text{gr/cm}^3$

Ps = 57 % Ps = 57 %

Cs = 19.4 tons. de sal/ha. Cs = 12.6 Tons. de sal/ha.

El cambio en el contenido de sal=19.4-12.6=6.8 tons. de sal/ha.

I Lo que significa que 6.8 tons. de sal/ha. fueron removidas desde la capa de 0 - 30 cm. por el agua de lavado. Este valor resulta superior en 1.4 tons. al obtenido con el balance de agua, y se explica porque en realidad, las sales removidas desde la parte superior del suelo no son todas lixiviadas hacia los drenes, sino que una parte es redistribuida hacia las capas más profundas del suelo.

- 2.4.4.- Evaluación del sistema de drenaje subterraneo del area piloto.
- 2.4.4.1.- Generalidades.

El sistema de drenaje (ver plano No. 3) consiste de un dren colector de una longitud de 820 m. y una profundidad de 2.25 m. y una serie de 12 drenes de campo.

Los drenes de campo tienen un espaciamiento entre ellos de 50 m. y una profundidad de 1.5 y 1.7 m.. La longitud de los drenes varia entre 200 y 400 m.. En total se instalò una longitud de 6000 m. de drenes de campo en el årea, de los cuales 3000 m. fueron de P.E. corrugado y 3000 de grava.

La pendiente del colector es de 1 % y de los drenes de campo varia en las tuberias de 1 %, 0.7 % y 0.5 %. En los de grava la pendiente fluctua entre 0.5 % y 0.7 %.

Los materiales filtroprotectores usados fueron: grava y paja de arroz en las siguientes combinaciones:

- Tubos de P.V.C. con grava.
- Grava con paja de arroz.

Y Los tubos de P.E tienen un diâmetro de 10 cm. y los mismos fueron importados.

Con respecto a la evaluación del funcionamiento del sistema de drenaje, los siguientes factores fueron considerados importantes:

- El nivel freático en la época del cultivo de arroz y barbecho.
- El espaciamiento y profundidad de los drenes.
- El comportamiento de los tubos, los drenes de grava y de los materiales filtroprotectores.
- El efecto del dren colector.
- 2.4.4.2.- Fluctuaciones del manto freatico.

Antes de la instalación del sistema de drenaje, el nivel freático en el área piloto fluctuó entre 0.21 y 0.35 m. de profundidad. Después de la instalación del sistema de drenaje (colector y drenes subterraneos), el nivel freático durante el cultivo de arroz fluctua entre 1.0 y 1.2 m. de profundidad y de 1.3 m. a 1.6 m. de profundidad durante la época de barbecho. El nivel piezométrico registrado fue de 0.2 m. de profundidad durante el barbecho.

2.4.4.3.- Espaciamiento y profundidad de los drenes.

El espaciamiento de drenes calculado, empleando la fòrmula de Hooghoudt fue de 15 m. y profundidad de 1.7 m.. Esto fue posteriormente modificado, instalandolos a un espaciamiento de 50 m. y a una profundidad de 1.5 m. en las primeras lineas y 1.7 m. en las restantes.

. . [Las observaciones sobre el abatimiento del manto freático producido por el sistema de drenaje indican que a pesar de que la textura de suelo predominante (arcilla y limo en un 86 %), el espaciamiento puede ser mayor con una profundidad mayor de 1.5 m..

El suelo del årea piloto es de textura fina hasta alcanzar la capa impermeable o hidroapoyo, advirtiendose la presencia de capa de agua colgada superficial, a las cuales podrian darseles salida con la instalación de drenes topo de reducido espaciamiento (2 a 5 m.) y poca profundidad (40 a 65 cm.).

2.4.4.4.- El Comportamiento de los tubos, la grava y de los materiales filtroprotectores.

Un anàlisis del comportamiento de los tubos y de los materiales filtroprotectores comprende dos aspectos:

- La resistencia de entrada al agua, debido al material que rodea el tubo.
- Sedimentación dentro del tubo y dilocación o rotura en la linea de tubos.

No se dispone de información para análizar los aspectos indicados, solamente es posible inferir en base a las observaciones hechas sobre la descarga de los drenes de campo, que los tubos de P.E, con filtros protectores de grava funcionan normalmente, registrándose descargas máximas de 4.3 mm/día. En los drenes hecho con grava se registraron descargas de 2 mm/día y, en los casos en que se utilizó paja de arroz como filtroprotector, se ha observado una reducción notable en la descarga.

· • •

2.4.4.5.- Efecto del dren colector.

El efecto del dren colector es notable. Esto fué deducido de la curva del perfil del manto freático perpendicular al eje del colector. Además, se puede apreciar su efecto cuando se hace una comparación de la descarga del sistema parcelario y la descarga del colector. En general, la captación directa del colector varía entre 1 hasta 2 veces la captación del sistema de drenes subterrâneos de campo.

- 2.4.4.6. Conductividad Hidraulica.
- 2.4.4.6.1.- A Partir de Mediciones de Campo.

Dentro de los limites del årea piloto se realizaron tres mediciones. Los valores determinados de 1.6, 1.9 y 2.2 m/dia rsultan muy altos y no se corresponden con el tipo de textura dominante en el suelo (arcillo - limoso).

2.4.4.6.2.- A Partir de la Evaluación del Sistema de Drenaje.

Con informaciones obtenidas en el sistema de drenaje, se ha evaluado la conductividad hidráulica por debajo del nivel freático. Con este propósito se utilizó la fórmula empleada, señalada a continuación, para calcular el espaciamiento de drenes en función de la transmisibilidad de las capas de suelo por debajo de los drenes y de la carga hidráulica por encima de los mismos.

$$L^2 = -----$$
, de donde:

 Empleando las informaciones del sistema instalado, se obtienen los resultados contenidos en el cuadro No. 5.

Cuadro No. 5. La conductividad hidraulica (K, m/dia) obtenida a partir de la relación carga hidraulica - descarga.

Dren	(m)	d (m)	h (m)	q (m/dia)	Kd (m ² /dia)	K (m/dia)
3	2.0	1.6	0.53	0.0029	1.7	1.10
5	2.0	1.6	0.75	0.0043	1.2	0.75
7	2.0	1.6	0.30	0.0014	1.5	0.94
9	2.0	1.6	0.42	0.0022	1.6	1.03

Donde:

D = Distancia desde los drenes entubados hasta el hidroapoyo (m).

d = Profundidad equivalente (m).

h = Distancia desde la superficie del suelo hasta el nivel freàtico entre dos lineas de drenes (m).

q = Recarga (m/dia).

Kd = Transmisibilidad de los estratos del suelo (m^2/dia) .

K = Conductividad Hidraulica (m/dia).

Como puede observarse dichos valores son muy inferiores a los obtenidos en las pruebas de campo, y guardan mayor relación con la textura arcillo - limosa predominante en los suelos.

Debe ser anotado que el colector capta principalmente, parte del flujo que asciende verticalmente desde el manto confinado. Esto explica la diferencia en la salinidad del agua descargada por los drenes subterrâneos de campo (2.0 gr/Lt.) y la del colector (3.2 gr/Lt.).

De lo anterior se puede concluir que sea más econômico y

efectivo construir drenes profundos (2.5 m.) muy espaciados, en lugar de una red densa de drenes superficiales. Sobre todo, si es que el dren profundo puede atravesar capas de alta conductividad hidráulica, y al mismo tiempo perforar pozos de 4 a 5 m. de profundidad en su plantilla, para provocar a través de ellos ascenso de agua confinada, la cual es la mayor responsable del proceso de salinización que actualmente afecta los suelos del valle.

2.5.- Jerarquización de las áreas con problemas de drenaje y salinidad para establecer el orden de aplicación de normas correctivas

Se han analizado un gran número de factores ântes de recomendar en esta etapa de diagnôstico, las "medidas correctivas" más idoneas que deberán aplicarse para detener y eliminar el problema de drenaje y salinidad.

En los aspectos de control de fuentes superficiales se han verificado lo siguientes:

- a) La formación de bordos y canales protectores de inundación en cauces de rios o arroyos ha sido considerada adecuadamente.
- b) La construcción de drenes interceptores y red colectora para conducir los volumenes superficiales, producidos por las precipitaciones pluviales ha recibido atención adecuada.
- c) Las redes colectores de los excedentes superficiales de riego ha recibido atención adecuada, pero no, las facilidades para descargar los excedentes del riego (agua

d 🚗

.1 🕳

∪ "[[de coleo). En el control de fuentes internas se ha observado:

- a) Existen tramos de los canales que son fuertemente aportadores por filtración.
- b) Las redes de drenaje existentes no fueron adecuadamente consideradas, como facilidades para el drenaje subsuperficial.
- c) Las redes de drenes interceptores de tipo parcelario no ha sido considerada.
- d) Baterias de pozos con función de drenaje vertical específicos en los casos de subalimentación del manto freático, por mantos confinados no ha sido considerado.
- e) La necesidad de drenaje subsuperficial no fue incluida inicialmente en el proyecto y, ahora se ha puesto a funcionar un campo piloto de drenaje subterrâneo con tuberias y grava.
- 2.5.1.- Indices de jerarquización de los problemas de drenaje y salinidad

Para definir las zonas que necesitan intervención inmediata en el establecimiento de facilidades para el drenaje subsuperficial y lixiviado de sales, se ha apoyado el criterio sobre tres indices, que se señalan a continuación, cuyos valores han sido fijado en las experiencias obtenidas en otros sistemas de riego con problemas similares.

1) Profundidad del manto freâtico menor de 2.0 m de la superficie del terreno.

[•

- 2) Manto freâtico con salinidad mayor de 1.4 gramos por litro.
- 3) Suelo con conductividad hidraulica menor de 1.5 m/dia. Se parte del supuesto que todas las áreas que mantienen estas condiciones requieren drenaje parcelario subsuperficial. Bajo este criterio se definen "las zonas problemas" a considerar en los trabajos de mejoramiento del drenaje en el espesor de 2.0 m de suelo y disminución de la salinidad en el perfil útil del suelo hasta llegar a contenido de sales no perjudiciales a los cultivos.

2.6.- Conclusiones.

Las conclusiones principales a las que se arriban, luego del análisis y estudio de la información disponible, son las siguientes:

- El valle de San Juan, en la margen derecha es una via de transito al flujo de las aguas superficiales y subterrâneas provenientes de la cordillera Central, la sierra de Neyba y las que se originan en el valle. Las cuales drenan hacia el rio San Juan y Yabonico, a través de una red de drenes naturales bien desarrollados.
- Las facilidades existentes para el drenaje superficial de los suelos son suficientes, pero no funcionan adecuadamente, debido a la obstrucción de los cauces por acumulación de sedimentos, crecimientos de vegetación acuática y construcción de represas.
- El drenaje interno de los suelos no recibió la atención requerida en la etapa de planificación del sistema de riego rehabilitado. En términos generales, los problemas

L.

de drenaje que se observan en las 3000 ha. están directamente vinculados a la incapacidad de los suelos para evacuar la recarga de agua que reciben, consecuentemente, se ha producido la ruptura del balance hidrològico soportable por dicho suelo.

- La ruptura del equilibrio hidrològico se ha producido principalmente como consecuencia derivada del manejo inadecuado del riego en las explotaciones agricolas. Las recargas sostenidas y permanentes que se producen durante el cultivo de arroz, han provocado cambios crônicos en el balance hidrico de los suelos del valle. Las zonas del valle más comprometidas en el problema de drenaje están ubicadas en los sitios de Pedro Corto y Magueyal, en las cuales, las recarga se produciria con la probable interconexión de acuiferos confinados con los mantos freáticos libres y/o colgados.
- La presencia de la salinidad en los suelos del valle está asociada a mantos freáticos superficiales que contienen elevadas concentraciones de sales disueltas. Desde el ascienden por capilaridad a horizontes superiores donde se acumulan. Este proceso es más marcado cuando por algunas circunstancias se han dejado las tierras en barbecho.

El origen de las sales en las aguas freáticas está relacionado con la existencia de aguas confinadas que han entrado en contacto con materiales de origen marino y que hidraulicamente están ligadas a los mantos freáticos libres del valle.

- Los suelos afectados muestran una salinidad incipiente, que no se puede considerar como problemática, sin embargo, se preve un acelerado proceso de salinización sino se toman las medidas convenientes de drenaje y manejo de riego, que controlen la recarga de agua hacia la zona radicular de los suelos.
- El sistema de drenaje subterrâneo del ârea piloto en cuanto a tubos y grava ha tenido un funcionamiento bueno.

 Los materiales filtrprotectores empleados, grava y paja de arroz, solamente la grava se comportó en forma adecuada.
- El nivel de información disponible es insuficiente para cuantificar en toda su magnitud los requerimientos de drenaje subsuperficial que aseguren la eliminación de los excesos de humedad y las sales de los suelos de la margen derecha.

2.7.- Recomendaciones.

- Restituir y mejorar la capacidad natural de drenaje del valle.
- Rehabilitar, mejorar y ampliar el sistema de drenes superficiales existentes.
- Instalar en las åreas afectadas una red de drenes subsuperficiales para evacuar los excesos de humedad del suelo.
- Profundizar el nivel base de los drenes superficiales existentes para utilizarlos como salidas de los drenes subsuperficiales a construirse.

Ĺ

[

- Reducir la recarga de agua inducida a través del incremento de las eficiencias en el uso del agua en los diferentes niveles de operación del sistema de riego J.J. Puello.
- Para evitar que el sistema de drenes de campo sea sobrediseñado, debe diseñarse el sistema de colectores troncales, principales y segundarios, en forma definitiva. El diseño de drenes de campo debe ser considerado como tentativo.

Durante la excavación de los drenes principales, el efecto del mismo sobre la depresión del manto freático debe ser evaluado y así poder modificar el diseño tentativo de los drenes de campo.

- Investigar con mayor profundidad la conveniencia técnica y econômica de combinar la construcción de drenes de campo, con drenes topo y fundamentalmente con colectores profundos y drenes de alivio en su plantilla.
- Previo al inicio de los lavados de los suelos afectados por sales, producir un mejoramiento del microrelieve del suelo con nivelación y/o emparejamiento y, subsolado en sentido paralelo a la dirección de la pendiente máxima del suelo.
- Durante la etapa de recuperación de los suelos utilizar cultivos tolerantes a la salinidad y exceso de humedad, como el arroz (durante dos campañas de lavados). A partir de que el nivel de salinidad haya descendido a menos de 7

١.

mmhos/cm, sembrar cultivos semi-tolerantes, como batata, sorgo, y cuando se alcanzen niveles de salinidad inferiores a 3 mmhos/cm., sembrar habichuela y otros cultivos sensibles a la salinidad, pero de alto valor comercial.

- Profundizar a través de un estudio detallado los aspectos relevantes de fuentes de recarga confinada, flujos laterales, salinidad de las aguas freáticas y capacidad de drenaje natural de los suelos del valle.

3.- ESTRATEGIA Y DIMENSIONAMIENTO.

3.1.- Concepción del subproyecto.

El subproyecto de estudios y diseños de redes de drenaje y recuperación de suelos se concibe como un conjunto de tareas, actividades y procesos que, servirán de base para plantear un esquema racional que permita llegar a soluciones tangibles en la tarea de restituir la capacidad productiva de los suelos afectados por problemas de drenaje y salinidad en la margen derecha del río San Juan; a la vez, la solución de esos problemas, permitirá prevenir la evolución hacia nuevas áreas.

Para restituir y sostener de manera permanente la capacidad productiva de las tierras ahora afectadas, se contemplan en el subproyecto la necesidad de desarrollar tres tipos de acciones generales:

- Instalar y construir un sistema funcional de drenaje.
- Controlar la salinidad en las tierras.
- Reducir la recarga inducida de agua al valle.
- 3.2.- Elementos operativos

Para el logro de los objetivos del subproyecto de drenaje y recuperación de los suelos afectados por salinidad, la estrategia propuesta está fundamentada en las siquientes actividades específicas:

3.2.1.- Diseñar y/o completar diseños para el mejoramiento del funcionamiento del sistema de drenaje existente.

El conjunto de actividades incluye:

[_]

- 3.2.1.1. Hacer los diseños para readecuar 9,417 Ml. de cauces naturales existentes y su incorporación a la red de drenaje principal del valle, así como su restitución operacional, eliminando los bloqueos y adecuando sus cauces.
- 3.2.1.2.- Diseños para la rehabilitación, mejoramiento y extensión del sistema de drenaje existente en las áreas afectadas, lo cual alcanza una extensión de 26.2 km.

Como paso previo a la realización de los diseños, se implemento un conjunto de medidas consistentes en:

- Inventario del sistema existente y condiciones operativas bajo la presente condición.
- Evaluación de la efectividad del sistema de drenaje existente con relación a su ubicación, características de sección y profundidad, capacidad de captación de agua y posición de nivel base de las estructuras de cruces.
- Mejoramiento del sistema existente en base a los parametros anteriores y conversión a dren enterrado en donde las condiciones se juzgaron conveniente.

Una vez definida las exigencias de drenaje y recuperación de suelos, se procedió a comparar las facilidades existentes con las requeridas, las necesidades de drenaje deficitario constituyó la función objetivo de la fase de diseño del sistema parcelario y debe seguirse la misma secuencia en la fase de implementación y construcción.

"]

1

[...]

3.2.1.3.- Diseño del sistema parcelario a nivel de fincas en las åreas afectadas, el cual tiene una extensión de 196,552
 Ml. en nivel parcelario y 25,440 Ml. en el nivel de colectores parcelario.

En los cuadros C-1 y C-2 del anexo, se presenta un resumen de los drenes y obras a rehabilitar y construir en las åreas afectadas.

3.2.2.- Control de la salinidad

Las actividades previstas para el control de la salinidad en las tierras afectadas guardan estrecha relación entre ellas y con las de drenaje, lo que obliga a que su ejecución se realize de manera coordinada y en secuencia muy estrecha.

Previo al inicio del proceso de lavado debe disponerse de estudios básicos que sirvan de apoyo para formular el plan de lavados. Los lavados serán ejecutados por los agricultores, como parte del riego a los cultivos y serán asistidos técnicamente para la ejecución.

Las características más relevantes de las acciones de mejoramiento previstas a realizarse en 500 ha. serán:

a) Nivelación de tierras, lo cual consistirá en realizar los movimientos, cortes y rellenos necesarios para adecuar la superficie del terreno de manera que se facilite la distribución uniforme del agua aplicada.

El movimiento de tierra no deberà perjudicar la fertilidad y la calidad productiva de la tierra, para lo cual se tomarà en cuenta las características del perfil del suelo.

~}_

ר ז ר ז

נטו

••

ŧ

3.2.3. Subsolado.

En las åreas afectadas, dominan los suelos de textura pesada con presencia frecuente de lentes de material de muy baja permeabilidad que sostienen capas colgantes de agua, además existe un manto freático confinado que contribuye a alimentar con agua muy salada al manto freático superficial.

Las labores de subsolado, después de la nivelación, asegura los beneficios de la nivelación, de la aplicación de mejoradores y la efectividad de los lavados.

3.2.4.- Aplicación de mejoradores.

Se contempla la aplicación de yeso como mejorador de la estructura y la permeabilidad del suelo. La dosis a aplicar es de 2 ton/ha., lo cual se realizará con las labores de preparación del suelo.

La construcción de las redes mayores y menores de drenaje se consideran objeto del subproyecto de drenaje y control de salinidad. En cambio, la nivelación, el subsolado, la aplicación de mejoradores y la operación de lavado se contemplan como propia de acciones que realizan los agricultores en sus fincas para aumentar la capacidad productiva.

3.3.- Metodologia para dimensionar las metas y costos del subproyecto.

Para el dimensionamiento de las metas propuestas a alcanzar con la ejecución de las actividades contempladas en el subproyecto y el costo de ellas, se simularon varios escenarios de funcionamineto del sistema principal de

 drenaje y del sistema parcelario a diferentes espaciamientos, profundidades y tipos de drenes: abiertos y/o subterrâneos.

Las metas finales planteadas guardan estrecha relación con los objetivos del subproyecto.

3.4.- Objetivos y metas

3.4.1.- Objetivos especificos

- Restituir y sostener la capacidad productiva de los suelos afectados por problemas de drenaje y salinidad.
- Detener el avance del proceso de empantanamiento y salinidad hacia nuevas àreas.

3.4.2.- Objetivos intermedios

- Adecuar el funcionamiento del sistema de drenaje a las necesidades del valle.
- Adoptar y aplicar normas y procedimientos para el control de la salinidad en los suelos del valle.

3.5.- Metas

En relación con los objetivos específicos:

- Lograr niveles de rendimientos en las cosechas de arroz de un 50 % en el primer año y 100 % a partir del segundo año, del potencial productivo. En habichuelas el 100 % a partir del segundo año.
- Mantener el manto freatico a una profundidad por debajo de 1.5 m. en los suelos del proyecto.

En relación a los objetivos intermedios:

[' ı

ı

- Al final del primer año de ejecución del proyecto, se habrá rehabilitado y/o construido los 11,230 Ml. de drenes naturales, los 36,420 Ml. de drenes principales abiertos y 221,992 Ml. de drenes parcelarios subterrâneos.
- En las 500 ha. de suelos afectados, se aplicaran las lâminas de sobre riego recomendadas, así como las labores de suelo.
- 3.6.— Interrelaciones con otras acciones del proyecto

 Desde el punto de vista de la concepción y objetivo

 general del proyecto, las acciones planteadas en el

 subproyecto de estudios y diseños de redes de drenaje y

 recuperación de suelos guardan estrecha relación con muchas

 de las acciones planteadas en otros componentes, entre

 ellas: las referentes al patrón de cultivos más

 conveniente a establecer en la fase de recuperación de los

 suelos afectados en la fase post recuperación, así como de

 las operaciones que deberán conducir los agricultores

 durante el proceso de lavados de suelos.

La definición y establecimiento de una estrategia de transferencia que logre aumentar significativamente el nivel actual de manejo de agua y tierra en el proyecto, está intimamente vinculada con la necesidad planteada de reducir las pérdidas inducidas através del uso ineficiente del agua.

L. ["

3.7.- Beneficiarios

La población directamente beneficiada por el subproyecto, en el sentido que recibirá todos los beneficios del mismo, está constituida por un total de 791 productores, de los cuales, el 44 % son beneficiarios de reforma agraria, con propiedades de menos de 3 ha.. Además, recibirán los beneficios de las acciones propuestas unos 710 productores adicionales, cuyos predios son potencialmente susceptibles de afectarse con el avance del proceso del empantanamiento y ensalitramiento que se desarrolla, especialmente a medida que se intensifica el riego.

3.8.- Descripción de las acciones propuestas

3.8.1.- General

Las obras proyectadas tienen por objeto principal recuperar los suelos salinos y empantanados en la superficie antes mencionada, que debido a limitaciones del drenaje interno de los suelos, bloqueos de cauces naturales existentes y aplicaciones excesivas de agua de riego han creado problemas de empantanamiento y ensalitramiento, lo cual se ha traducido en una pérdida de la capacidad productiva en una superficie de 2375 has. brutas de tierra, en las cuales, solamente es posiblehacer un ciclo de arroz con rendimientos que en la mayoría de los casos resultan inferiores a 1.9 ton/ha. (30% del potencial productivo de los suelos normales), y limitado los rendimientos en 600 ha. adicionales que se siembran de habichuela, batata, sorgo y maiz, los cuales están produciendo por debajo del 70 % de su productividad, bajo

L condiciones normales. Además, con dichas obras se detendrá el avance del proceso de empantanamiento y salinización hacia nuevas áreas que ahora funcionan normalmente, pero que potencialmente resultan suceptibles de afectarse.

Se considera por tanto necesario para corregir y evitar la

Se considera por tanto necesario para corregir y evitar la continuación del proceso de empatanamiento y salinización:

- 3.8.1.1.- Proyectar un sistema de drenaje interno, integrado por:
 - a) 196,552 metros lineales de drenes parcelarios de 100 mm. de diâmetro colocado a una profundidad de 2 m. y 100 m de espaciamiento.
 - b) 25440 metros lineales de drenes subcolectores
 subterrâneos de 160 mm. de diâmetro a una profundidad de 2
 m.
 - c) Construir 23,220 metros lineales de drenes abiertos con profundidad de 2.5 m.
 - d) Construir 13,200 metros lineales de drenes colectores principales abiertos, con profundidad de 3 m.
 - e) Rectificar y linearizar de 11,230 m. de cauces naturales
 - f) Construcción de 57 caidas y 26 alcantarillas, cuyas características se presentan en los cuadros C-1 y C-2 del anexo.
- 3.8.2.- Recuperar los suelos drenados y afectados por salinidad (500 has. aproximadamente) mediante las siquientes operaciones:
 - a.- Nivelación del terreno (500 ha.)
 - b.- Subsolado en dirección transversal a los drenes parcelarios, a máxima pendiente, profundidad de 0.5 m. y

;__

separación de 2 m.

- c.- Incorporación de correctivos correspondientes, para mejorar la permeabilidad del terreno (yeso pulverizado a razón de 2 ton/ha).
- d.- Labores de preparación del terreno para lavado.
- e.- Lavados del terreno, con lâminas de 15 cm. e intervalos de 5 días.
- 3.8.2.- Análisis técnico de alternativas para selección de acciones

El uso de drenes subterrâneos con tuberias a nivel parcelario y de subcolectores, combinado con drenes principales abiertos, resulta la solución más idónea desde el punto de vista de costo de construcción, funcionamiento, costo de mantenimiento y aceptación por los agricultores. Comparado con drenes subterrâneos, los abiertos tienen ventajas y desventajas específicas, entre las ventajas se destacan:

- Ellos pueden servir para recibir tanto el agua de escorrentia superficial como subsuperficial.
- Requieren menos gradiente para el transporte del agua.
- Son de făcil inspección.

Entre las desventajas, se incluyen:

- Pérdida de tierras agricolas.
- Crecimiento de plantas acuáticas y erosión, ambas situaciones requieren frecuente y costoso mantenimiento.
- Las parcelas son divididas en tamaños más pequeño, lo cual dificulta enormemente la actividad agricola.

Para el análisis se ha considerado la construcción y

 mantenimiento de un kilòmetro de dren parcelario de 2.0 m. de profundidad, para las condiciones de suelo, clima y requerimiento de mantenimiento en San Juan.

- Costo de construcción

Dren abierto:

Profundidad: 2.00 m.

Solera : 0.70 m.

Talůd : 1 : 1

Ancho camino de servicio: 3.00 m.

Ancho de la zanja: 4.70 m.

Cantidad de tierra a mover : 5,400 m³.

Costo del m³: US\$ 2.26 (administración).

Costo total por kilômetro : US\$ 12,204

Dren Subterråneo:

Profundidad: 2.00 m.

Ancho de la zanja: 0.50 m.

Material de drenaje :

- Tubo plástico de 100 mm. de diámetro.
- Grava no clasificada con espesor de 0.10 m.

por debajo y por encima del tubo de drenaje.

- Tubo de P.E de 4 de diâmetro y 2.5 m. de largo.

Requerimiento de maquinaria:

- Drenadora : se requieren 19 horas.
- Excavadora hidraulica: 1 hora.
- Motoniveladora : 5.2 hora.

ر () ()

Costo de maquinaria:

- Drenadora : US\$ $49.2/h. \times 19 h. = US$ 934.8$
- Excavadora : US\$ 49.2/h. x 1 h. = US\$ 49.2
- Motoniveladora : US\$ 35.6/h. x 5.2 h. = US\$ 185.1

Costo de los materiales de drenaje :

- Tuberia : US\$ 1,200/km.
- Grava: US\$ $10/m^3 \times 140 \text{ m}^3/\text{km}$. = US\$ 1,400/km.
- Tubo de salida y piezas auxiliares : US\$ 60/km.

Costo total por kilômetro : US\$ 3,829.1

Superficie de tierra utilizada :

- Drenes abiertos.

Ancho de la zanja: 4.70 m.

Ancho del camino de servicio: 3.00 m.

Total superficie utilizada : 7.70 m. \times 1000 m. = 7,700 m² = 0.77 ha/km.

- Drenes subterraneos.

No utiliza tierra agricola.

Costo de mantenimiento:

- Drenes abjectos.

Considerando una limpieza por año.

Rendimiento de una excavadora hidraulica: 50 m/h.

1,000 m. Costo: ---- x US\$ 49.2/h. = US\$ 984.00 50 m/h.

- Drenes subterrâneos.

Durante el primer año, se requiere una limpieza y varias visitas de inspección con reemplazo de partes afectadas. El costo máximo de mantenimiento ocurre durante el primer año de instalación del sistema, alcanzando valores entre US\$

۲.

50.00 y US\$ 100.00 por kilômetro, para lo cual se utiliza un compresor de alta presión (drain cleaner).

Una gran ventaja de los drenes abiertos es de disponer de mayor facilidad para evacuar los excesos de agua, tanto superficiales como subsuperficiales. En el caso del valle de San Juan, esa ventaja comparativa no tiene mucho peso, debido a que la zona se caracteriza por una escasa precipitación anual. El cuadro No.2 resume los datos del análisis comparativo de las ventajas y desventajas de usar drenes parcelarios abiertos y subterrâneos.

Cuadro No.2 Análisis comparativo de las ventajas y desventajas de drenes subterrâneos Vs. drenes abiertos.

dren	Costo de const. (U.S\$/km)	Tierra usada (m²/km)	Costo de mant. (U.S\$/año/km)	Rapidez de evacuación	Dificultad de labores agric.	•	obras
Abierto	12204	7700	984	Alta	Mucha	Alto	
Subt.	3 82 9	0	70	Baja	Minguna	Minguna	

3.9.- Costos

El costo de las acciones proyectadas es el siquiente:

Costo de las obras : US\$ 2,191,033

Ingenieria y supervisión : US\$ 440,290

Estudios y diseño : US\$ 197,357

Equipos : US\$ 12,000

Vehiculos : US\$ 38,500

Total: US\$ 2,879,180

Partidas sin asignadas : US\$ 575,836

Gran Total: US\$ 3,455,016

-1

4.- ORGANIZACION INSTITUCIONAL

4.1.- Licitación y ajudicación de obras

Se propone que los trabajos de mejoramiento en 11,230 m. de cauces naturales, lo mismo que la construcción de los 221,992 m. de drenes subterrâneos sean ejecutados por administración bajo la responsabilidad del INDRHI, con cargo a fondos del proyecto. Para tal efecto, el INDRHI tendrá la responsabilidad de crear una unidad ejecutora y contratar servicios de asesoria. Deberá disponer de términos de referencias, normas y procedimientos acordados con la agencia financiadora del proyecto, a los cuales se ceñirá la unidad ejecutora.

Los trabajos de construcción de 36,420 m. de drenes principales abiertos y las obras complementarias, se ejecutarán mediante contratos con empresas privadas. El INDRHI deberá formular las bases y términos de referencia para la licitación. El control y supervisión de dichas obras estarán a cargo del INDRHI.

- Se propone que los trabajos de lavado de los suelos salinizados sean realizados por los propios agricultores como parte de las actividades normales que realizan en sus fincas, con asistencia técnica de una unidad especializada.

El costo de la nivelación seria conveniente financiarlo como parte de las acciones a ejecutar en el componente de producción agropecuaria.

i •1 1 11, L

5.- EJECUCION

5.1.- General

Para la construcción de las obras y operaciones necesarias para el saneamiento y la recuperación de los suelos afectados, se seguira como norma y esquema operativo lo siquiente:

- Construir el sistema principal de drenaje incluido la intervención en los cauces naturales y evaluar su efecto sobre el abatimiento del manto freático.
- Realizar el sistema de drenaje parcelario en dos fases, colocando en la primera los drenes a 100 m. de distancia (doble distanciamiento del årea piloto), y en una segunda fase se intercalaran drenes en aquellas unidades de suelos en que el sistema de drenaje colocado en la primera fase resulte insuficiente.
- Restitución y linearización de drenes naturales: se proyecta reestablecer y ampliar su capacidad de drenaje natural, bajando su nivel base hasta una profundidad minima de 3 m.. Así mismo, se reducirán al minimo los "codos" existentes en ellos.
- Profundización de desagues: siempre que los drenes parcelarios y/o subcolectores desaguen en un dren colector de zanja abierta ya construido, habrá que profundizar su nivel base, cuando entre la salida prevista del dren y la solera de la zanja, haya una diferencia de cota menor de 30 cm..

-1. ••• -1 _ | **_ 1**. - .. - !. -- 1

- Profundización y tapado de zanjas: dado que existen zanjas innecesarias, se proyecta cubrirlas dejando en el interior un dren con envolvente de grava para crear una zona con mejor capacidad de drenaje, habrá que limpiarlas y profundizar cuando el dren previsto haya de ir a una profundidad mayor que la existente en la zanja.
- 5.2.- Tendido de drenes: se hará con drenadora a excepción de las partes donde aparezca lodo.
 - El material de los tubos de drenaje a emplear será cloruro de polivinilo (PVC), corrugados flexibles, con diámetro nominal de 100 mm., longitud de 100 m., espesor de la pared del tubo 1.0 mm., anchura de la ranura de 2.0 mm., longitud de la ranura 25 30 mm. y peso de 0.48 0.64 Kg/m. Para los subcolectores parcelarios, se emplearán tubos corrugados con diámetro nominal de 160 mm.
 - La pendiente màxima serà de 6 por mil y minima de 3 por mil en los parcelarios. En los subcolectores, la pendiente serà de 6 por mil.
 - En las zanjas abiertas con la drenadora se extenderà una capa de grava de 20 cm. de espesor como de relleno poroso.

 Las zanjas se rellenaràn una vez tendido el dren, con la tierra extraida al abrirlas.
 - Las salidas de los dremes en su parte final será protegida con tubos envolventes de PVC rigido sin perforar y 2.5 m. de longitud. La longitud de 2.5 m. de éstos tramos viene dada por la apertura ralizada con retroexcavadora para facilitar el comienzo del trabajo de la drenadora.

Pibe- P

- La longitud de las lineas de drenaje más conveniente será de 400 m., en longitud mayor se contruirán registros a distancias multiples de esa.
- Perforaciones manuales de 3 m. de profundidad en la solera de los drenes abiertos principales , a distancia de 100 m. Las perforaciones no serán protegidas.
- Completar la labor del drenaje subterrâneo con la construcción de drenes "topos", lo que favorece el espaciamiento de drenes parcelarios fijado y el paso del agua a través de capas de suelo impermeable.
- Subsolado en dirección de la máxima pendiente del terreno, a profundidad de 0.4 a 0.6 m. y separación de 2 m..

5.3.- Labores y enmiendas:

- Las tierras que van a lavarse deben nivelarse previamente y someterse a una buena preparación del terreno. Después se forman "melgas" con superficie no mayor de un cuarto de ha.
- Inmediatamente después de colocar los drenes y antes de iniciar los lavados de desalinización, se extenderá yeso sin cocer en dosis de 2 ton/ha, efectuando acto seguido un subsolado a 0.6 m. de profundidad.

5.4.- Lavados

- Se iniciarán cuando el manto freático haya descendido hasta una profundidad minima de 1.0 m.. Las láminas parciales de lavados serán de 15 cm. y se aplicarán cada 5 a 6 días.

6¹⁵ "" 1 ŧ ۱ - ۱

5.5.- Cronograma de ejecución

	Actividad	Håmeros									Meses calendario												
!	MCCIAIONG	MUDELUS	1	1	2	3	4	5	6		1	8	9	10	1	11	12	13	3	14	15	1	16 ;
A	Entrga de equipos y materiales							•															
1	Firma de contrato (IMDRMI-Cont.)		1	ŧ																			
2	Maquinas de drenaje	2	1	ŧ	*	1	*																
3	Excavadoras	7	1	ß	*																		
4	Motoniveladora	1	1	ß	1																		
5	Tractores	2	1	ß.	*																		
6	Tubos PE, diâmetro de 100 mm.	196,992 m.	1	•	1	1	*																
7	Tubos PE, diâmetro de 160 mm.	25,440 m.	1	ß.	*	*	*																
8	Diseños definitivos																						
1	Dremes abiertos	47,650 m.	1	ŧ	1																		
2	Drenes subterrânees	221,992 m.						*	*														
c	Ejecución de las obras																						
1	Entrega de tuberias	221,992 m.						1	*	1	ŧ												
2	Transporte de tuberia al campo	221,992 a.							1	1	t	*	*	*	*		*						
3	Excavación drenes principales	47,650 m.					*		*	1	t	*	*	*	*								
4	Excavación tendido de drenes subterr.	221,992 m.						*		1	t	*		*					*			ŧ	ţ
5	Tranporte de grava al campo	23,586 m^3						1	*	1	B	*	*	*	*	*		*	*	*		1	į.
6	Tapade drenes subterrâneos	221,992 m.						1	ŧ	*	*	*	*	*	1	1	1	: 1	1	*	*	*	1
7	Conexión registros	-						*	*	1	ŧ	*		*	*				*			1	;
8	Construcción obras complementarias						*		*	1	ŧ.	*	*	*	*	*	*						

5.6. Programa de inversiones

Concepto	Año 		Total	
A Inversiones 1 Obras civiles 2 Equipos y maq. 3 Equipos varios 4 Equipos transporte 5 Estudio y diseño	1,655.00 700.00 12.00 38.50 197.40	536.00 74.00 	2,191.00 774.20 12.00 38.50 197.40	
B Costos de operació 1 Personal 2 Servicios 3 Material gastable	òn 	n was was was was was was w as w as		

	•
	1
	•
	, tag
	•
	1
•	•
	•
	W— ·
	•
	-
	,
	7
]
	4
	,
	• •
	j
	ן

6.- JUSTIFICACION DE LAS ACCIONES PROPUESTAS

- El esquema de drenaje seleccionado con una combinación de drenes a cielo abierto en nivel principal y subterrâneo a nivel parcelario, es técnico y financieramente ejecutable y asegura la obtención de los objetivos planteados.
- El INDRHI, que además de sus funciones de autoridad de aguas, tendrá la responsabilidad directa en la administración del subproyecto, mediante la organización de la unidad ejecutora propuesta para conducir los trabajos de restitución operativa de los drenes naturales, la construcción de los parcelarios y licitar las obras complementarias y nuevos drenes a construir, sera la institución de la ejecución de las acciones planteadas.
- De acuerdo con el nivel de inversión requerido para ejecutar las acciones propuestas, las mismas resultan del orden de los US\$ 1,100/ha., que comparado con los beneficios directos e indirectos a generar a través de los resultados a lograr, tienen una âmplia justificación. Se estima que el subproyecto reincorporará a la producción agricola sostenida alrededor de 500 ha. y mejorará los niveles actuales de producción en unas 3,075 ha., incluidas las 500 ha. indicadas. Con ello se beneficiarán directamente unos 791 productores, los cuales podrán mejorar significativamente sus ingresos y en consecuencia su bienestar social.

			é s
			ت

í

d

- La ruptura del equilibrio hidrològico en los suelos de la margen derecha del rio San Juan ha afectado significativamente el medio ambiente, deteriorando los suelos con la acumulación de sales nocivas al crecimiento vegetal y generando un ambiente favorable al desarrollo de plagas e insectos que ataca tanto la especie humana, como vegetal y animal.

Las acciones del subproyecto, asegurarán la restitución de la capacidad productiva de los suelos, detendrá el impacto detrimental en ellos y saneará el medio ambiente favorable para el desarrollo de plagas y enfermedades.

ANEXO

•

4.]

RENDIMIENTO POR CULTIVO ENCUESTA

•] - |-

Heabre y Apellide			fecha sieebra	(ha)		Observ.
Adolfe Lara	ZOTIE	••			2.40	1 cosecha/añe
José Reyes	•		••	2.9		• •
José Nates	•	••	••		1.22	• •
	•	••	••	2.8	1.43	
Cuillermo Lapaix	•	••	1991		4.73	• •
	•	••	1990		3.13	• •
			1990			
Victoria Isabel	•		1991		4.73	
UNPNU				5.●		• •
	betate			5.●		• •
Loomardo do los 8.			1991	1.1	4.14	
	habichuel	•	1991	2.5	0.18	
	eaiz		1991	1.4	••	
	arrez		1990		2.39	
	maiz		1990	0.6	2.00	
	FLLOS		1991		5.37	
	TOJIE		1990		5.11	
	betete				11.52	
Felix Valey N.	ZOTIE		1991		1.74	
	batata		1991		14.40	
	habichuel		1991		1.30	
	TOLIR		1990		4.10	
	habichuel:	ı	1990		0.80	
Juan 8. Herrera	20118		1991		2.25	
Urbano Formandez	habichuel:	8	todo los años	15.0	0.78	
	pastos		permanente	22.5		
Sucesión Naut	TOLIR		1991	20.3	3.45	
	betete		1991	10.0	8.00	
	habichuel	1	1991	12.5	1.20	
Joaquin (Kin)						
Benzán	30116		1990	11.3	2.76	
	betate		1990	5.3	16.00	
	ZOTIS		1991	14.3	4.33	
	betata		1991	11.3	pórdid	a problemas dremaje
	habichuela	3	1991	18.8	1.20	
Julie Suero M.	#LLOS	-	anual	12.0	3.86	
	pastes		permanente			
Osiris Ramiroz	ZOTIE		1991	2.3	2.94	
	batata		1991	2.3	8.00	
Felix Valoy M.	arrez .		1991	0.6	1.74	
	betata		1991	1.6	14.40	
	habichuel	1	1991	1.6	0.80	
	TOLIR		1990	0.6	4.10	
	habichuel	_	1990	1.6	0.00	

•

.

.

Florestine Herrera	arroz		1991	2.5	3.91	
Lierametine merran						
	20118		1990	2.5	2.30	
					1.15	
Juan Herrera f.	TOLLE		1990	2.5	2.10	
Ranôn P. Ros	SELLEZ 20118		1991	1.5	3.38	
	maiz		1991	1.1	1.76	
	pastes		permanente	0.8		
	ZOTIA		1990	1.5	3.03	
	betete		1990	1.1	8.47	
Jacobo Mentero	aji/		2770	2.8	no no	
TOCOGO MONICOLO	berengena			4.5	cuantificado	
Jesé Oviede	•		1001	AA 6		
	Arroz		1991	22.5	3.36	
(46.8 ha.)	betata		1991	9.8	4.10	
	pastos		permanente	1.3		
Jesé Sarie	betata		1991	16.9	20.00	
(20.6 ha)	pastos/		permanente	1.3		
	Busacoas					
	STOZ		1990	15.0	1.73	
	habichuels	1	1990	10.9	0.37	
Marciso Detal	arroz		1991	27.1	3.41	
(30.8 ha.)	ZOTIA		1990	27.1	2.94	
(50.0 1.5.7	batata		1990	4.5	11.20	
	pastos		permanente		11.64	
	batata		poi manen ce	3.0	12.00	
Acres Acres as						
Servio Bautista	cilantre				3.75 sace	
	•				per ha.	
	maiz				.187 sace	
					por ha.	
Confesor Javier	aji, remol	acha, mai	z y tenate			
Jesé Viciese	batata				5.60	pozo 5
Perfirie de León	ZOTIE			2.4	1.94	peze 7
					3.58	•
	habichuela	ì				rend.bajo
						30 QUODA
Nicolas Aquino	arrez			1.9	1.84	pezo 6 y 7
Pable Aquine		dieste de	1990	2.3	1.99	pato o y /
Lease infertio			1770	2.3	1.77	
		gate	4007			
	TOLLE	ISA-40	1987	2.3	3.73	
	ZOTIE	I SA- 21	1982	2.3	4.98	
	betata		1990	2.3	9.73	
Ramôn Hentere	ZOTIE	SICA-4	6/91	1.9	2.24	pezo 8
	20116	JUMA-58	6/90	1.9	1.50	
	AFFOZ	JUMA-58	6/88	1.9	3.06	
		ISA-21	6/86	1.9	3.%	
	habichuela		1/86	1.1	3373	párdida
	maiz	,	10/85	1.9		pérdida
	habichuela		1/85		1 20	hei aras
			•	1.1	1.20	
	habichuela		1/84	1.1	1.06	
	TOLIE	JUM-58	6/83	1.9	3.22	
	maiz		2/83	1.9	1.84	
Milario Diaz	20118	ISA-40	7/91	2.2	2.37	
	•	Mingele	8/90	2.2	2.63	
	•	ISA-40	7/89	2.2	2.74	
			-			

_ []] Ţ. T 1 L 1

Carlos H. Ramirez	20118	SICA-4	3/91	2.2	3.73	peze 11
	•	ISA-40	3/90	2.2	2.62	otres cult
	•	JUNA-58	7/89	2.2	3.47	singerg on
	•	JUMA-58	4/88	2.2	3.15	
	•	ISA-40	5/87	2.2	2.62	
	•	ISA-40	3/86	2.2	2.94	
	•	SICA-6	4/85	2.2	0.37	granizada
	•	I SA- 21	11/84	2.2	3.80	_
	•	JWW-51	3/83	2.2	2.42	
	•	I SA-21	4/82	2.2	4.62	
	•	SICA-4	6/81	2.2	3.02	
Euclides Resario	20118	ISA-40	7/91	2.4	1.88	pezo 5
	•	Mingelo	8/90	2.4	1.38	-
	•	diente de	8/87	2.4	2.18	
		gate				
	•	ISA-21	7/88	2.4	2.18	
	•	JUM-58	7/87	2.4	2.10	
	•	ISA-21	6/86	1.7	4.26	
	•	SICA-6	6/85	2.4	3.87	
	•	ISA-40	5/84	2.4	3.61	
	habichuela		1/84	2.4		pé rdi da
luca del Mosario	SOTIA	ISA-40	5/91	1.9	3.83	pozo 3
	•	ISA-40	7/90	1.9	1.29	faltó agua
	•	ISA-40	6/90	1.9	3.74	
	•	ISA-21	6/30	1.9	3.43	
	•	J VIIA-58	12/87	1.9	2.91	
	•	I 30-40	6/87	1.9	3.83	
	•	ISA-40	5/86	1.9	3.52	
	50190	hibri do	6/84	1.9	1.18	
	maiz		6/83	1.9	1.66	
	habichuela		12/82	1.9		pérdida
Rafael Familia	20118	J WWA-58	Hayo	1.9	2.14	
José Miguel	ZOTTE	diente da gato	9/90	2.8	1.86	
	•	JUM-58	9/89	2.8	2.76	
Soctore Familia	•	diente de	8/91	2.3	1.48	
essent Lumilie		gate	6/ 71	4.9	1.70	
	•	JUMA-57	\$/90	2.3	1.58	
	habichuela		•/ 74	2.9	1.50	pérdida
Estanislae Castille		diente de	9/90	0.9	0.92	pozo 28
Catemiaies descriti	errec	gato	71 74	v. ,	₩.72	poto 10
	yuca			●.5		pérdi d e
	maiz			0.4		OSCASO
	maiz		5/85	2.2	2.68	
	habichuela		1/83	2.2		pérdide
Elpidio Gonzalez	betete		2/91	2.1	6.66	cerca da dren
	SOLIR	ISA-40	6/89	2.8	1.54	P. Martin-Mag
	•	ISA-21	6/88	2.8		pórdida
	•	18A-21	6/85	2.8	2.54	
	•	I SA-2 1	6/84	2.8	1.84	
	•	18A-21	7/83	2.8	2.55	

• •

Juan B. Falcôn	arrez	SICA-6	6/91	2.8	2.04	cerca a P.N.N
	•	diente da	•	2.8	1.72	
		gate				
	•	ISA-21	6/87	2.8	2.55	
	•	ISA-21	6/88	2.8	3.66	
	•	I SA- 21	6/87	2.8	2.86	
Bartolo Sanchez	betete		6/11/91	1.6	7.38	
(2.8 ha.)	20118	I 3A-40	8/91	1.2	1.70	
less.ib.2						
Camile Suero M.	pastos	per	manente 1	125.0		
(188 Ma.)	sorga				1.12	
	maiz					
	yeca					
	habichuela				1.64	
	sorga forra	19 .			2 certe	
	King grass				4 certe	•
n 11 H A	E.africane		4.40			pece desar.
Folix H. Benzan	ZOTTE	JUM-57	4/8		3.68	
(375 ha.)		y 58.	14/0		7 /0	
	hahiahuala	Nigueyane			3.68	
Maklim Morillo	habichuela habichuela		11/12		1.20	
MSKITM MALITIA	STLOS STANDICHMOTE					
Telio Montes de Oca			persaneni	4 4 8		
(32.5 ha.)	ALLOZ PESCOS	Nigueyano	•		2.76	
(02.3 m2.)	betete	u. Jee Jane			12.80	
	habichuela				11.00	
Isails Comez	Zeria			2.0	1.40	
	habichuela			4.0	0.56	
	betata				6.00	
Zona No.11						
Angel Valdéz	habichuela		1/90	0.4	1.43	uso do buoyes
	habichwela		1/91	0.4	2.00	•
Francisco Ogando	ZOTIE	18A-21	1991	2.3	1.88	trac y ,
(2. 82 ha .)		y 40				nivelación
	arroz	• •	1990	1.6		perdida per
	- > - 4					agua.
	platamo		1900	1.6		Cerva mivel
	SOTIA	I SA- 21 y 40	1987	1.6	2.12	
	ZOTIE	• •	1906	2.5	1.57	escasa agua
José Ogando	SOTIE	ISA-40	1991	2.3	2.81	
(3.25 ha .)	arroz		1990	2.3	3.50	propración
	•	Tanioka	1989	2.3	3.32	del terreno
	•	JUMA-58	1988	2.3	3.83	c/tracter y
	-	=	1987	2.3	3.32	con topog.
	•	•	100		2.05	
			1906	2.3	2.55	
					3.58	

^]]] J.].]. T 7 I I 7

Sucesión Herillo	20118	JUMA-58	1991	4.4	4.21	
		ISA-21			4.42	
Jacobe Zabala	20116	ISA-21	1991	0.9	2.10	• • •
					2.37	• • •
Seate Cabral	ZOTIE		1991	0.6	2.39	
Antonio Lobr ó n	maiz		1990	2.3	1.23	
	hebichwela		1990	2.3	0.45	
	hebichwela		1989	2.3	1.11	
	maiz		1989	2.3	1.50	
	maiz			2.3	1.80	
	hebichuela			2.3	0.94	
Gaspar Castillo	29118	ISA-21	1906	2.3	4.36	uso bueyes
•		ISA-40	1991			per problema
						drenaje
	habichuela			1.5	0.75	•
Gaspar Castillo	SOTIE	I SA-2 1	1906	3.3	3.34	
•		ISA-40	1990		4.42	
	arrez					
	(2 cesechas)		1991	3.3	3.34	
	(0,				3.54	
	maiz, habic	huela y ba	tata			perdida
Manuel Mates	SOLIE	ISA-21	6/91		5.52	•
		ISA-40	6/90		4.60	
	habichuela		12/90		1.60	
	batata		12/90		17.60	
Marine Ramirez	AFFOZ	ISA-40	6/91	6.3	4.97	MF a 40cm
	arrez	•	4/90	6.3	5.98	
	arrez	•	7/90	3.8	4.60	
	betata		.,			pérdide
Julian Ramirez	Sola	•		4.7	4.60	después
	27732			•••	5.52	de riege
	habichuela					pérdida
						suelo
						saturado
	miz					pérdida
Alcadio de los						P 0
Santes	batata		4/91	2.6	12.10	falta agua
	ZOTA	124-40	7/91		2.08	
			., ,,			

f • YOLUMEN A EXCAVAR EN DRENES SUPERFICIALES ABIERTOS

.1, e^

PICHINGA ,

rot.	AREA MEDIA (M^2)	LONG (M)	VOLUMEN DE CORTE (M15)
0	0.00	60.00	0.00
6.0	7.89	60.00	173.44
120	8.20	60.00	492.26
180	8.82	60.00	529.21
240	9.71	60.00	582.40
300	10.64	60 0 0	638.13
360	11.64	60.00	698,41
420	12.65	60.00	759 OR
400	10.34	60 00	740.10
540	11.27	60.00	675.98
୯୯୦	10.73	60.00	644.01
660	9.61	60.00	576.75
720	8.73	۵0.00	527.38
780	8.79	60.00	527 38
840	9.06	60.00	543.58
೨೦೦	9.61	60.00	576 75
960	10.37	60.00	622.47
1020	10.93	60.00	655.88
1080	11.03	60. 00	661.87
1140	9.89	60.00	593.66
1200	7.97	60 00	478.47
1260	6.36	60.00	381.64
1320	7.58	60.00	45 4 98
1380	7.25	60.00	435 25
1440	6.285	60.00	411.20
1500	7.01	60.00	420.70
1560	7 83	60.00	470.04
1620	8.70	60.00	522.07
1680	9.61	60.00	576.77
1740	10.54	60.00	632.24
1800	10.87	60 00	651.95
1860	10.64	60.00	638.10
1920	10.44	60.00	626.38

VOLUMEN TOTAL DE CORTE (M°3) 18218,74

٠, ... _____ _ e, ...

EST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
0	0.00	60.00	0.00
60	11.23	60.00	673.99
120	13.56	60.00	813.78
180	7.50	60.00	449.99
240	7.72	60.00	463 33
300	8 6 7	60.00	520.30
360	8.41	60.00	504.43
420	9.46	60.00	567.48
430	8.38	60 00	502.67
540	ବ.ବଠ	60.00	593.75
600	9.64	60 00	578.67
600	8.44	6 0 00	506.18
720	8 82	60.00	529.21
780	6.49	60.00	389.34
840	6.91	60.00	414 37
300	5.06	60.00	303.78
960	10.90	60.00	653.9 6
1020	14.05	60.00	842.85
1080	14.62	60 00	877.02
1140	15.32	60.00	918.91
1200	15.47	60.00	928.36
1260	15.24	60.00	914.20
1320	14.69	60.00	881.61
1380	14.85	60.00	890.85
1440	14.24	60.00	854.13
1500	13.56	60.00	813.74
1560	12.83	60.00	769.98
1620	12.51	60.00	750.69
1680	12.48	60.00	748.55
1740	12.73	60.00	763.52
1800	10.15	60.00	608.93
1860	10.31	60 00	618.56
1920	10.63	60.00	638.06
1980	9.30	60.00	558.17
2040	9.52	60.00	571.10
2100	6.54	60.00	390.35 478.55
2160 2220	7,98 7,75	60.00 60.00	465.00
2280	7.75 8.41	60.00 60.00	504 43
2340	10.34	60.00 60.00	620 5 7
2400	10.54	60 00	632.24
2460	10.25	60.00	614.77
2520	10.12	60.00	607 07
2580	8.00	60.00	480.21
2640	7 61	60.00	456.61
2700	9.03	60.00	541.79
2760	9.74	60 00	584.04
2820	7.05	60.00	423 90
2880	9.40	60.00	563.79
2940	9.33	60.00	560.09
3000	7 72	60.00	463.32
3060	10 44	60,00	626.39
3120	11 95	60.00	717.05
3130	0.68	60,00	580 30
3240	12 02	60,00	721,20

1.)*

3300	12.55	60.00	752.84
3360	9.52	60.00	571.16
3420	9 52	60.00	571.15
3480	10 09	60.00	605.13
3540	. 11.88	60.00	712.83
3600	11.16	60.00	669.90
3660	7.33	60.00	440.07
3720	6.25	60.00	411.13
3780	8.17	60.00	490.47
3840	9.09	60.00	545.38
3900	9.71	60.00	582.33
3960	7.86	60.00	471.67
4020	7.33	60.00	440.05
4080	7 78	60.00	466,59
4140	7.78	60.00	466.58
4200	8.41	60.00	504.32
4260	8.49	60.00	509.59
4320	8.15	60.00	488.70
4380	6.88	60.00	412.67
4440	7.25	60.00	435.13
4500	9.74	60.00	584.14
4560	8.85	60.00	530,86
4620	6 01	60.00	360.54

VOLUMEN TOTAL DE CORTE (M^3) 45471.78

		(·) !
		1
		1
		1
		•
		1
		•
		Ç

ZABALA No.2

EST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
0	0.00	60.00	0.00
60	7 07	60.00	423.94
120	5.91	60.0 <mark>0</mark>	354.76
130	7.81	60.00	468.37
240	7.58	60.00	454.96
300	7.61	60.0 0	456.65
360	7.75	60.00	465.00
420	7.39	60.00	443.43
480	7 04	60.00	422.33
540	5.65	50.00	338.77
600	9.09	60.00	545 45
660	10.23	60.00	616.71
720	9.77	60.00	586.17
780	9,09	60.00	545.47
840	7.42	60.00	445.06
900	9.83	60 00	589,96
960	12.27	60.00	735.92
1020	9,49	60.00	569.36
1080	8.00	60.00	480.26

VOLUMEN TOTAL DE CORTE (M^3) 8942.573

ZABALA No.3

EST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
0	0.00	60 00	0.00
60	5,94	60.00	356,22
120	7.17	60.00	430.38
180	6.83	60.00	409.60
240	7.39	60 00	443 41
300	8.38	60.00	502 70
360	9.64	60.00	578.69
420	10.64	50.00	638 IS
480	11.44	60.00	686.19
540	12.20	60.00	731.72
600	11.81	60 00	7 08.76

VOLUMEN TOTAL DE CORTE (M°3) 5485 856

			1
)
]
•			
			•
}			

EST.	ARFA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M ¹ 3)
			0.00
0	0.00	60.00	0.00
60	9.15	60.00	549.10
120	9.96	60.00	597 53 510 57
180	8.64	60.00	518.53
240	8.23	60.00	494.00
300	7.20	60.00	432.02
360	6 57	60.00	393 99 463.35
420	7 72	60.00	454 . 99
480 540	7.58 7.56	60.00 60.00	453.34
600	7.36 8.26	60.00	495.76
660 660	7 69	60.00	461.68
720	9 03	60.00	541.86
780	9 43	60.00	565.69
840	8.97	60.00	538.26
900	10.80	60.00	648.07
960	9.58	60.00	574.98
1020	8.88	60.00	532.87
1080	9.96	60.00	597.60
1140	9.61	60.00	576.87
1200	8.23	60.00	494.06
1260	4.28	60.00	256.74
1320	8.70	60.00	522.07
1380	8 23	60.00	493.98
1440	7.56	60.00	453.30
1500	7.78	60.00	466.66
1560	9.46	60.00	567.47
1620	13.09	60.00	785.19
1680	15.24	60.00	914.20
1740	13.90	60.00	833.83
1800	10.02	60.00	601.32
1860	9 58	60.00	574.89
1920	9 46	60.00	567.44
1980	8.70	60.00	522.03
2040	9 15	60.00	549.05
2100	8.49	60.00	509.65
2160	9.00	60.00	539.96
2220	9.55	60.00	573.01 483.61
2280 2340	8.06 6.75	60.00 60.00	404.84
2400	6.93	60.00	415.88
2460	7.53	60.00	451.59
2520	6.18	60.00	371.04
2580	7.31	60.00	438.50
2640	6.83	60.00	409.61
2700	6.04	60.00	362.13
2760	5.89	60.00	353.29
2820	7.28	60.00	436.88
2880	6.67	60.00	400.20
2940	4 84	60.00	290. 30
3000	6.36	60.00	381.69
3060	2.55	60.00	573.06
3120	10.02	60. 00	601.35
3180	7.15	60.00	428.76
3240	6.59	60.00	395.55
3300	7 09	60.00	425.54

5 18 60 00

310.61

	·)"
	1
	1
	4

*** >	1 4 54	2 · · · · · ·	*****
3480	6.93	60.00	415.05
3540	7.39	60.00	443.40
3600	8.06	60.00	483 65
3660	12.55	60.00	752 87
3720	15.55	60.00	933.11
3780	14 66	60.00	879 31

VOLUMEN TOTAL DE CORTE (M^3) 32391 69

,)"

MOTOS No.2

FST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
0	0.00	60 00	0.00
<i>6</i> .0	9 03	60.00	541,84
100	11 03	60.00	661 92
180	9 .96	60,00	597.53
240	7.64	60 0 0	458 30
300	7.34	60.00	440.13
360	6.96	60.00	417 54
420	5.18	60 00	310 60
480	8.00	60.00	480 26
540	8.29	60,00	497.47
600	8.67	60.00	520.31
660	9.46	60.00	567.50
720	8.09	60.00	485.40
780	5.15	60.00	309.26
840	7.98	60.00	478.54
900	10.41	60.00	624.45
960	14.20	60.00	851.90
1020	15.35	60.00	921.28

VOLUMEN TOTAL DE CORTE (M^3) 9164.216

ZABALA No.1

EST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
0	0 00	60.00	0 00
60	8.49	60.00	509.70
120	10.02	60.00	601.35
180	9.34	60.00	560.11
240	6.93	60.00	415 96
300	6.19	60,00	371.12
360	7 01	6 0 00	420 75
420	7.78	60 .00	465.70
480	8 06	60.00	483.68
540	6.83	60,00	409 64

VOLUMEN TOTAL DE CORTE (M^3) 4239.012

)	

LORO No.1

EST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
0	0.00	60 00	0.00
60	10.90	60 00	653.73
120	10.11	60.00	606.73
150	9.95	60.00	597.14
240	9.92	60.00	595,05
300	9.70	60.00	581.93
360	10.24	40.00	614.47
420	10.86	40.00	651.76
480	11 40	60.00	684.00
540	11.20	60.00	671.84
600	9.95	60 00	597.16
660	8.66	60.00	519.68
720	13.16	60.00	789.75
780	13 46	60.00	807.38
840	13.75	60 00	825.18
900	14.05	60.00	843.20
960	12.23	60.00	733.83
1020	11.06	60.00	663.78
1080	10.96	60.00	657 76
1140	10.27	60.00	616.40
1200	9.30	60.00	557. 77
1260	9.76	60.00	585.80
1320	10.02	60.00	601.00
1380	7.51	60.00	450.82
1440	11.64	60.00	698.37
1500	12.27	60.00	735.94
1560	12.59	60 00	755.11

VOLUMEN TOTAL DE CORTE (M^3) 17095.86

) <u> </u>
		1
]
	•	
		اسم

LORO No.2

EST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
()	0.00	60 00	0.00
60	11,30	60.00	47 7 ,89
120	11.13	60.00	667 78
180	11.20	60.00	671.81
240	11.26	60.00	675.8B
300	11,13	60.00	667.78
360	11.23	60.00	673.86
420	11.54	60.00	692.20
480	11 81	60 00	7 08 72
540	12.51	60.00	750 86
6.00	13.24	60.00	794.17
660	13.09	60.00	785.43
720	12.48	60.00	748.72
780	12.09	60.00	725.45
840	11.95	60.00	717.07
୨୦୦	11.23	60.00	673.90
960	7.99	60.00	479.51
1020	11.20	60.00	671.81
1080	11.64	60.00	698.36
1140	12.87	60.00	772.32
1200	14.17	60.00	849.96
1260	13.35	60.00	800.71
1320	11 20	60.00	671.79
1380	10.47	60.00	628.03
1440	8.63	60.00	517.84

VOLUMEN TOTAL DE CORTE (M^3) 14721.87

1)

7400

LAMBEDERO			
EST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
0	0.00	60.00	0.00
60	12.16	60.00	729.60
120	13.75	60.00	825.18
180	15.44	60.00	926.56
240	17.23	60.00	1033.74
300	18.07	60.00	1084.40
360	19.82	60.00	1189.29
420	22.12	60.00	1327.14
480	23.41	60.00	1404.71
540	22.31	60.00	1338.51
600	19.03	60.00	1141.52
660	16.94	60.00	1016.35
720	15.25	60.00	914.79
780	14.55	60.00	872.8 9
840	14.21	60.00	852.31
900	12.62	60.00	757.31
960	10.76	60.00	645.85
1020	9.48	60.00	56 8.94
1080	7.71	60.00	462.55
1140	10.73	60.00	643.80
1 200	10.40	60.00	624.15
1260	10.57	60.00	633.95
1320	10.24	60.00	614.45
1380	9.73	60.00	583.88
1440	9.08	60.00	544.92
1500	10.96	60.00	657 .73
1560	10.50	60,00	630.02
1620	10.86	60.00	651.75
1680	1113	60.00	667.78
1740	11.06	60.00	663.77
1800	10.63	60.00	637.89
1860	9.61	60.00	576.36
1920	10.47	60.00	628.09
1980	10.90	60.00	653.78
2040	9.33	60.00	559.6 3
2100	11.16	60.00	669.79
2160	10.93	60.00	655.74
2220	11.16	60.00	669.80
2280	11.54	60.00	692.20
2340	11.54	60.00	692.20
2400	9.95	60.00	597.17
2460	10.83	60.00	649.76
2520	9.11	60.00	546.73
2580	10.47	60.00	628.05
2640	9.14	60.00	548.56
2700	11 37	60.00	681 . 96
2760	11.03	60.00	661.76
2820	10.73	60.00	643.82
2880	9 51	60 00	570 76
2940	11.78	60,00	706.62
3000	12.13	60.00	727.51
3060	11.57	A0.00	694.25
3120	11 64	60. 0 0	6 98 37
3180	12 91	60.00	774.52
3240	13.70	60.00	827,45
3300	14,05	60,00	843 21
3360	13.16	60.00	789 80

744.48

T 7 , , ŕ

J.740	12.07	00.00	701.00
3600	12.20	60.00	731.79
3660	12.41	60.00	744,49
3720	12.41	60.00	744.51
3780	11.95	60.00	717.11
3840	12.66	60.00	759.49
39 00	14.24	60.00	854.63
3960	13.46	60.00	807.48
4020	10.02	60.00	601.06
4080	11 78	60.00	706.62
4140	12 27	60.00	7 35.94
4200	11.57	60.00	694.27
4260	11.54	60,00	692.17
4320	10.70	60,00	641.81
4380	8.31	40.00	498,47
4440	11.03	60 0 0	661.73
4500	10.08	<u> 60.00</u>	604,80
4560	8.13	60,00	488.06
4620	11.06	60.00	663.75
4680	10.80	60.00	647 .7 6
4740	12.37	60.00	742.29
4800	14.66	60.00	879.74
4860	15.48	60.00	928.92
4920	16.32	60.00	979.40
4980	15.92	60.00	955.18
5040	16.45	60.00	986.70
5100	18.98	60.00	1138.81
5160	19.78	60.00	1186.54
5220	18.85	60.00	1130.94
52 80	17.90	60.00	1074.11
5340	19.02	60.00	1141.42
5400	20.63	60.00	1237.97
5460	20.54	60.00	1232.50
5520	19.91	60.00	1194.57
5580	20.18	60.00	1210.73
5640	21.09	60,00	1265.45
5700	22.26	60.00	1335.52
5760	21.14	60,00	1268.21
5820	18.39	60.00	1133.51
5880	20.54	60.00	1232.46
5940	17.44	60.00	1046.20

VOLUMEN TOTAL DE CORTE (M^3) 80600.5

Į

1

CEIBA No.1

EST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
0	0.00	60.00	0.00
60	9.37	60.00	561.94
120	11.30	60.00	678.03
180	10.02	60.00	601.33
240	7.50	60.00	449.99
300	9.06	60.00	543.62
360	11.99	60.00	719.12
420	11.10	60.00	665.91
480	9.06	60.00	543.60
540	8.47	60.00	507.91
600	9.89	60.00	593.70
660	11.00	60.00	659.88
720	11.00	60.00	659.88
780	9.03	60.00	541.77
840	7.89	60.00	473.38
900	9.99	60.00	599.38
960	13.64	60.00	818.15
1020	16.43	60.00	985.97

VOLUMEN TOTAL DE CORTE (M^3) 10603.56

CEIBA No.2

EST	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
0	0.00 7.42	60.00 60.00	0.00
120	7.44	60.00 60.00	445.05
180	9.71	60.00	582.41
240	13.31	60.00	798.33
300	14.43	60.00	865.54
360	13.31	60.00	798.33
420	12.13	60.00	727.50
480 540	10.38 8.35	60.00 60.00	622.54 500.96
600	7.47	60.00	448.37
660	7.20	60.00	432.02
720	7.17	60.00	430.41

VOLUMEN TOTAL DE CORTE (M^3) 7098.147

 ϕj_k^T r

CEIBA No.3

EST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTF (M^3)
0	. 0.00	60.00	0.00
60	8.09	60.00	485.39
120	8.61	60.00	516.76
180	9.00	60.00	540.02
240	9.40	60.00	563.79
300	8.70	60.00	522.11
360	7.81	60.00	468.39
420	7.07	60.00	423 98
480	6.93	60.00	415.98
540	7.64	60.00	458.3 5
600	6.99	60.00	419.17
660	5.84	60.00	350.40
720	7.34	60.00	440.14
780	6.67	60.00	400.20
840	7.34	60.00	440.15

VOLUMEN TOTAL DE CORTE (M^3) 6444.832

DS - LAMBEDERO

EST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
0 60 120 180 240 300 360 420 480	0.00 8.26 9.30 10.73 11.95 13.53 14.16 13.09	60.00 60.00 60.00 60.00 60.00 60.00 60.00	0.00 495.74 558.26 644.04 717.05 811.56 849.63 785.19 717.05
480 540 600 660 720 780	11.95 10.54 9.30 7.75 5.74 7.58	60.00 60.00 60.00 60.00 60.00	717.05 632.24 558.24 464.98 344.51 454.97

VOLUMEN TOTAL DE CORTE (M^3) 8033.455

_ i. - [- 1 ¢ I . <u>T</u> • T F-1-1 [F-1

NARGISO.DOTEL

FST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
0	0.00	60.00	0.00
60	7.86	60.00	471.74
120	8.12	60.00	487.08
180	8.38	60.00	502.68
240	8.64	60.00	518.51
300	9.09	60.00	545.44
360	9.71	60.00	582.40
420	10.31	60 OO	618.62
480	10.93	60.00	655.92
540	11.57	60.00	694.32
600	12.16	60.00	729.57
660	12.73	60.00	763.56
720	13.31	60.00	798.32
780	13.93	60.00	836.09
840	14.77	60.00	886.27
900	14.24	60.00	854.18
960	12.44	60.00	746.52
1020	10.47	60.00	628.38
1080	8.38	60.00	502.71
1140	6.99	60.00	419.17
1200	5.84	60.00	350.39
1260	6.88	60.00	412.78
1320	5.43	60.00	325.95
1380	7.34	60.00	440.13
1440	6.44	60.00	386.28
1500	5.18	60.00	310.62
1560	7.28	60.00	436,88
1620	6.41	60.00	384.76
1680	5.67	60.00	340.21
1740	6.96	60.00	417.54
1800	6.14	60.00	368.10
1860	5.04	60.00	302.42
1920	7.20	60.00	431.99
1980	7.34	60.00	440.13

VOLUMEN TOTAL DE CORTE (M^3) 17589.65

Ĺ. Ţ I. I I I I c I I I يرد

SILLON

EST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
0	0.00	60.00	0.00
60	11.20	60.00	671,80
120	8.40	60.00	503.75
180	11.74	60.00	704.56
240	12.51	60 0 0	750.82
300	11.88	60.00	712.88
360	11.16	60.00	669.80
420	10.66	60.00	639.88
480	11.26	60.00	675,88
540	11.27	60.00	675.91
600	8.54	60.00	512.58
660	12.20	60.00	731.71
720	13.02	60.00	781.01
780	11.88	60.00	712.83
840	11.33	60.00	679.90
900	11.92	60.00	714.90
960	9.51	60.00	570.69
1020	11.30	60.00	677.89
1080	7.99	60.00	479.45
1140	10.80	60.00	647.78
1200	8.99	60.00	539.44
1260	11.50	60.00	690.14
1320	11.50	60.00	690.13
1380	11.40	60.00	683.99
1440	10.60	60 00	635.89
1500	9.39	60.00	563.26
1560	8.40	60.00	503.71
1620	12.94	60.00	776.66
1680	15.28	60.00	917.09
1740	16.73	60.00	1003.92
1800	17.90	60.00	1074.15
1860	18.76	60.00	1125.74
1920	19.60	60.00	1175.86
1980	19.46	60 00	1167.88
2040	18.72	60.00	1123,13

VOLUMEN TOTAL DE CORTE (M^3) 25185

1 57		
•		
·		
•		
•		
. ~		
()		

SANCHEZ - LA URCA

EST.	AREA MEDJA	LONG.	VOLUMEN DE
	(M^2)	(M)	CORTE (M^3)
0	0.00	60.00	0.00
60	8,90	60.00	534.00
120	14,66	60.00	879.76
180	16.୨୫	60.00	1018.77
240	16.୧୫	60.00	964.87
300	14.47	60.00	868.25
360	10.86	60.00	651.76
420	6.94	60.00	416.55
480	13.90	60.00	834.14
540	17.65	60.00	1058.92
600	18.20	60.00	1092.08
660	17.52	60.00	1051.35
720	16.90	60.00	1013.83
780	17.31	60.00	1038.79
840	16.94	60.00	1016.32

VOLUMEN TOTAL DE CORTE (M^3) 12439.39

PEDRO MARTIN MAGUEYAR

EST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
0	0.00	60.00	0.00
60	11.26	60.00	675.86
120	11.00	60.00	659.75
180	11.54	60.00	692.19
240	11.88	60.00	712.88
300	11.40	60.00	684.02
360	11.33	60.00	679.96
420	11.43	60.00	686.07
480	11.88	60.00	712.90
540	12.73	60.00	763.73
600	14.13	60.00	347. 76
660	14.70	60.00	882.13
720	14.47	60.00	868.30
780	14.59	60.00	875.21
840	14.47	60.00	868.33
900	12.87	60.00	772.41
960	14.63	60.0 0	977.54
1020	12.44	60.00	746.65
1080	12.51	60.00	750.82
1140	11.37	60.00	681.97
1200	9.76	60.00	585.7 6
1260	12.27	60.00	735.96
1320	8.78	60.00	526.23
1380	11 00	60.00	659 75

I T Ť O'T T

COLUMNA No.1

EST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN OF CORTE (M^3)
^	0.00		0 00
0	0.00	60.00	0.00
6 0	10.80	40.00	648.00
120	12.51	60.00	750.75
130	9.46	60.00	567.49
240	3.41	40 OO	504.44
300	9.21	60.00	552.76
360	10.09	60.0 0	605.18
420	6.11	60.00	366.62
480	8.18	60.00	490.54
340	8.32	60.00	499.19
600	7.75	JO.00	465.00

VOLUMEN TOTAL DE CORTE (M^3) 5449.982

COLUMNA No.2

EST.	AREA MEDIA	LONG.	VOLUMEN DE
	(M^2)	(M)	CORTE (M^3)
0	0.00	(M) 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00	0.00
60	7.69		461.65
120	9.15		549.09
180	9.68		580.54
240	9.06		543.63
300	9.99		599.44
360	10.15		608.99
420	8.03		481.95
480	5.55		333.02
540	9.30		558.26
600	10.12		607.09
660	9.24		554.30
720	8.41	60.00	504.43
780	7.95	60.00	476.02
840	7.53	60.00	451.64

VOLUMEN TOTAL DE CORTE (MOS) 7311.137

1)

COLUMNA No.3

EST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
O	0.00	60.00	0.00
୧୦	7.34	60.00	440.14
120	11.78	60.60	706.68
180	17.97	60.00	1078.34
210	17.68	60 .00	1000.56
300	16.63	60.00	1000.72
360	15.28	60.00	916.57
450	14.20	o0. 0 0	051.83
480	12.60	60.00	757 12
540	13.05	50.00	783.00

VOLUMEN TOTAL DE CORTE (M°3) 7595.014

COLUMNA No.4

EST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE COPTE (M^3)
0	0.00	60.00	0.00
60	8.76	60.00	525.63
120	9 .34	60.00	560.10
180	8.32	60,00	499.21
240	7 50	60.00	450.03
300	6.93	60.00	415.96
360	7.09	60.00	425.58
420	7 20	60.00	432.03

VOLUMEN TOTAL DE CORTE (M^3) 3308.539

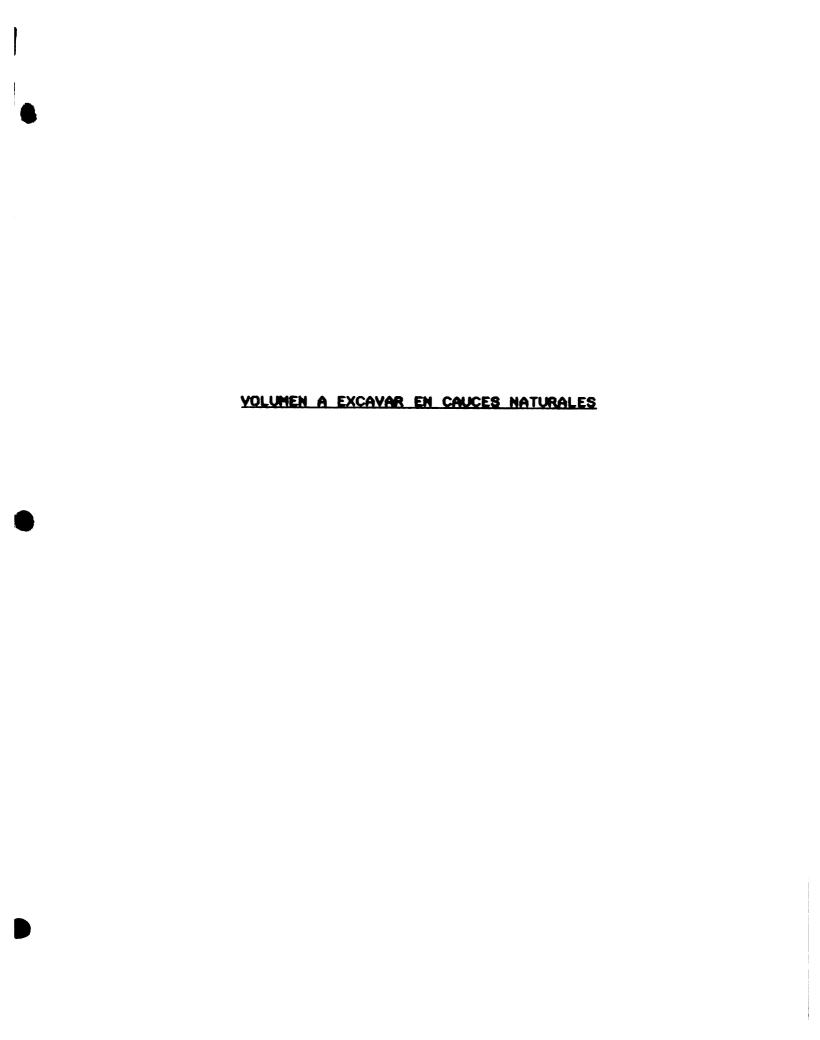
COLUMNA No.5

EST.	, AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
0	0.00	60. 0 0	0.00
60	7.53	60 00	451.65
120	6.80	60.00	408.04
180	5 67	60.00	340.20
240	7.42	60 00	445,06
300	7.22	60.00	453.61
360	C.EO	60 00	408 04
430	5 62	60 00	33 7 .30
430	8.27	60 00	497.47
540	7.78	60 00	466.68
600	6.85	60,00	411.20
660	6.80	60.00	408.04
720	6.67	60 00	397.10
780	6.77	60.00	406.47
840	7.42	60.00	445.08

VOLUMEN TOTAL DE CORTE (M^3) 5855.969

COLUMNA No. 6

FST.	AREA MEDIA (M^2)	LONG. (M)	VOLUMEN DE CORTE (M^3)
0	0.00	60 00	0.00
60	6.67	60 00	400.20
100	5 99	60.00	359.19
180	6. 9 3	60.00	415.96
240	7.69	60.00	461.66
300	8.03	60.00	481.97
360	8.18	60.00	490 56
420	5.22	60.00	313.40
480	7.34	60.00	440 14
540	6,09	60 OO	365.11
600	8.03	60.00	481 96
660	9.12	60.00	547 07
720	10 80	60.00	648.00
780	13.05	60.00	783.04
840	15.99	60.00	959.39
900	17.84	60 00	1070 70
960	17,68	60.00	1060,54
1020	16.35	60.00	991 1 -
1080	13 80	60.00	51.5


VOLUMEN TOTAL DE CORTE (M^3) 11089 A.

١, (ر

El siquiente cuadro muestra el volumen real de corte de los drenes superficiales abiertos, debido a que algunos de ellos tienen un volumen ya excavado, como son : Zabala, Lambedero, Matos, Pedro Martin Magueyar, El sillôn, Loro No.1 y Sanchez - La Urca.

Drenaje	Volumen real
	a excavar
	(m^3)
Narciso Dotel	17,589.65
Zabala	27,283.06
Lambedero	52,390.32
Matos	24,293.76
La Pichinga	18,218.74
P. Martin-Mague.	5,084.03
DS-Lambedero	8,033.45
Sillån	17,629.50
Loro No.2	16,721.87
Loro No.1	13,676.68
Ceiba No.2	7,098.14
Ceiba No.1	10,603.56
Ceiba No.3	6,444.83
Columna No.1	5,449.98
Columna No.2	7,311.13
Sachez-La Urca	4,975.75
Columna No.3	7,595.01
Columna No.4	3,308.53
Columna No.5	5,855.96
Columna No.6	11,089.60
Matos No.2	9,164.21
Zabala No.1	4,239.01
Zabala No.2	8,942.57
Zabala No.3	5,485.85
Volumen Total (m	³) = 298,485.28

	Ì
	1
	en T
	,,1
]
	1
	,
	,
	•
	♥,. † !
	! !
	1
	1
	1
	•
	į
	r,
	<i>•</i>
	•

•	
·ŋ'	
7	
•	
•	
•	
•	

MOVIMIENTO DE TIERRA

Cañada San Antonio

Est.	Area	Area media	Long.	Volumen
	(m^2)	(m^2)	(m)	(m^3)
0+000	0.00			
0+150	0.40	0.20	150.00	30.00
0+250	8.10	4.25	100.00	425.00
0+350	8.90	8.50	100.00	850.00
0+425	6.13	7.52	75.00	564.00
0+450	17.50	11.82	25.00	295.50
0+525	18.98	18.24	75.00	1368.00
0+585	10.08	14.53	60.00	871.80
0+725	21.00	15.54	140.00	2175.60
0+800	15.38	18.19	75.00	1364.25
0+840	8.64	12.01	40.00	480.40
0+975	10.35	9.50	135.00	1282.50
1+100	13.60	11.98	125.00	1497.50
1+200	12.32	12.96	100.00	1296.00
1+350	15.53	13.93	150.00	2089.50
1+525	6.72	11.13	175.00	1947.75
1+675	19.87	13.30	150.00	1995.00
1+875	13.18	16.53	200.00	3306.00
1+950	18.50	15.84	75.00	1188.00
1+970	15.72	17.11	20.00	342.20

Volumen total de corte (m³) = 23369.00

Cañada Pedro Sanchez

Est.	Area (m^2)	Area media (m^2)	Long. (m)	Volumen (m^3)
0+000	35.70			
0+025	12.50	24.10	25.00	602.50
0+038	9.12	10.81	13.00	104.53
0+075	26.40	17.76	37.00	657.12
0+106	18.48	22.44	31.00	695.64
0+218	10.75	14.62	112.00	1637.44
0+275	22.14	16.45	57.00	937.65
0+450	18.90	20.52	175.00	3591.00
0+550	11.55	15.23	100.00	1523.00
0+650	23.40	17.48	100.00	1748.00
0+710	11.20	17.30	60.00	1038.00
0+875	25.51	18.36	165.00	3029.40

"] и,

0+900	19.20	22.36	25.00	559.00
0+954	12.00	15.60	54.00	842.40
0+984	14.94	13.47	30.00	404.10
1+075	16.19	15.57	91.00	1416.87
1+158	2.72	9.46	83.00	7 8 5.18
1+422	4.98	3.85	264.00	1016.40

Volumen total de corte (m³) = 20624.23

Cañada La Columna

Est.	Ar ea (m^2)	Area media (m^2)	Long.	Volumen (m^3)
0+000	5.55			
0+025	10.61	8.08	25.00	202.00
0+050	6.14	8.38	25.00	209.50
0+075	11.12	8.63	25.00	215.75
0+100	23.00	17.06	25.00	426.50
0+125	13.05	18.03	25.00	450.75
0+150	19.33	16.19	25.00	404.75
0+175	18.56	18.95	25.00	473.75
0+200	38.63	28.60	25.00	715.00
0+225	10.40	24.52	25.00	613.00
0+250	44.88	27.64	25.00	691.00
0+275	9.10	26.99	25.00	674.75
0+300	10.32	9.71	25.00	242.75
0+325	8.89	9.61	25.00	240.25
0+350	3.72	6.31	25.00	157.75
0+375	5.20	4.46	25.00	111.50
0+400	18.90	12.05	25.00	301.25
0+425	18.48	18.69	25.00	467.25
0+450	5.87	12.18	25.00	304.50
0+475	7.11	6.49	25.00	162.25
0+500	6.40	6.76	25.00	169.00
0+525	5.02	5.71	25.00	142.75
0+550	9.50	7.26	25.00	181.50
0+575	10.40	9.95	25.00	248.75
0+600	18.50	14.45	25.00	361.25
0+625	10.58	14.54	25.00	363.50
0+650	11.22	10.90	25.00	272.50
0+675	8.42	9.82	25.00	245.50
0+700	10.43	9.43	25.00	235.75
0+725	9.68	10.06	25.00	251.50
0+750	4.42			
0+800	4.42	4.42	50.00	221.00
0+810	13.55	8.99	10.00	89.90
0+825	3.36	8.46	15.00	126.90
0+900	7.61	5.49	75.00	411.75
0+950	7.50	7.56	50.00	378.00
1+058.28	8.06	7.78	108.28	842.42

(,,

1+200	30.96	19.51	141.72	2769.96
1+234.50	13.65	22.31	34.50	769.70
1+260	17.60	15.63	25.50	398.57
1+825	6.54	24.14	565.00	13639.10
1+830	10.23	8.39	5.00	41.95
1+937	11.00	10.62	107.00	1136.34
2+011	8.61	9.81	74.00	725.94
2+023	1.80	5.21	12.00	62.52
2+100	11.04	6.42	77.00	494.34
2+125	3.60	7.32	25.00	183.00
2+175	6.65	5.13	50.00	256.50
2+250	4.80	5.73	75.00	429.75
2+305	4.96	4.88	55.00	268.40
2+309	7.03	6.00	4.00	24.00
2+375	4.40	5.72	66.00	377.52
2+417	6.00	5.20	42.00	218.40
2+450	3.03	4.52	33.00	149.16
2+475	2.74	2.89	25.00	72.25
2+537	5.60	4.17	62.00	258.54
2+600	6.31	5.96	63.00	375.48
2+731	0.13	3.22	131.00	421.82
2+800	4.48	2.31	69.00	159.39
2+844	0.00			
2+850	2.06	2.24	44.00	98.56
2+864	3.53	2.80	6.00	16.80
2+985	0.08	1.81	121.00	219.01
3+175	4.55	2.32	190.00	440.80
3+310	5.93	5.24	135.00	707.40
3+543	4.97	5.45	233.00	1269.85
3+575	1.46	3.22	32.00	103.04

Volumen total de corte (m³) = 37699.31

Cañada 5D-1

Est.	Area (m^2)		Long.	Volumen (m^3)
	9.00	9.00	840.00	7560.00

Volumen total de corte (m^3) = 7560.00

Cañada DS - 9/01

Est.	Area (m^2)	Area media (m^2)		Volumen (m^3)
	9.00	9.00	970.00	8730.00
		. 7.		

Volumen total de corte (m^3) = 8730.00

	•
	1
	•
	71
	(
	·
	•
	•
	1
	1
	l
\cdot	Ç.,

Est.	Area	Area media	Long.	Volumen		
	(m^2)	(m^2)	(m)	(m^3)		
0+000	19.02	4.4.57	05 00			
0+025	10.71	14.87	25.00	571.75		
0+050	9.16	9.94	25.00	248.50		
0+075	7.95	8.56	25.00	214.00		
0+100	10.96	9.46	25.00	236.50		
0+125	8.00	9.48	25.00	237.00		
0+150	11.16	9.58	25.00	239.50		
0+175	13.13	12.15	25.00	303.75		
0+200	9.16	11.15	25.00	278.75		
0+225	10.50	9.83	25.00	245.75		
0+250	5.58	8.04	25.00	201.00		
0+275	8.87	7.23	25.00	180.75		
0+300	31.50	20.19	25.00	504.75		
0+325	19.29	25.40	25.00	635.00		
0+350	25.70	22.50	25.00	562.50		
0+375	13.03	19.37	25.00	484.25		
0+400	3.42	8.23	25.00	205.75		
0+425	17.30	10.36	25.00	259.00		
0+450	11.22	14.26	25.00	356.50		
0+475	12.87	12.05	25.00	301.25		
0+500	6.16	9.52	25.00	238.00		
0+525	2.41	4.29	25.00	107.25		
0+550	4.80	3.61	25.00	90.25		
0+575	4.14	4.47	25.00	111.75		
0+600	5.08	4.61	25.00	115.25		
0+625	3.67	4.38	25.00	109.50		
0+650	4.61	4.14	25.00	103.50		
0+675	3.21	3.91	25.00	97.75		
0+700	9.86	6.54	25.00	163.50		
0+725	9.49					
0+750	7.55	9.68	25.00	242.00		
0+775	12.79	10.17	25.00	254.25		
0+800	5.16	8.98	25.00	224.50		
0+825	6.56	5.86	25.00	146.50		
0+850	5.22	5.89	25.00	147.25		
0+875	7.15	6.19	25.00	154.75		
0+900	3.60	5.38	25.00	134.50		
0+925	1.02	2.31	25.00	57.75		
0+950	11.38	6.43	25.00	160.75		
0+975	1.62	6.73	25.00	168.25		
1+000	1.49	1.56	25.00	39.00		
1+025	0.00	0.75	25.00	18.75		
1+050	0.13	0.07	25.00	1.75		
1+075	1.55	0.84	25.00	21.03		
1+100	0.00	0.78	25.00	19.50		

			-
			, r •
			•
	·		
		÷	F,
			C
			İ

1+125	0.00	0.00	25.00	0.00
1+150	0.00	0.00	25.00	0.00
1+175	0.00	0.00	25.00	0.00
1+200	3.52	1.76	25.00	44.00
1+225	5.84	4.68	25.00	117.00
1+250	1.25	3.55	25.00	88.75
1+275	7.66	4.46	25.00	111.50
1+300	10.36	9.01	25.00	222.25
1+325	4.86	7.61	25.00	190.25
1+350	7.62	6.24	25.00	156.00
1+375	19.34	13.48	25.00	337.00
1+400	13.51	16.43	25.00	410.75
1+425	5.00	9.26	25.00	231.50
1+450	11.70			
1+475	9.24	8.35	25.00	208.75
1+500	13.33	11.29	25.00	282.25
1+525	11.71	12.52	25.00	313.00
1+550	8.82	10.27	25.00	256.75
1+575	13.82	11.32	25.00	283.00
1+600	12.74	13.28	25.00	332.00
1+625	10.76	11.75	25.00	293.75
1+650	17.10	13.93	25.00	348.25
1+675	7.79	12.45	25.00	311.25
1+700	10.44	9.12	25.00	228.00
1+725	5.21	7.83	25.00	195.75
1+750	7.04	6.13	25.00	153.25
1+775	9.41	8.23	25.00	205.75
1+800	14.08	11.75	25.00	293.75
1+825	20.72	17.40	25.00	435.00
1+850	10.92	15.82	25.00	395.50
1+875	11.15	11.04	25.00	276.00
1+900	9.60	10.38	25.00	259.50
1+925	9.46	9.53	25.00	238.25
1+950	8.79	9.13	25.00	228.25
1+975	10.11	9.45	25.00	236.25
2+000	16.94	13.53	25.00	538.25
2+025	12.01	14.48	25.00	362.00
2+050	3.99	8.00	25.00	200.00
2+075	13.69	8.84	25.00	221.00
2+100	8.85	11.27	25.00	281.75
2+125	10.88	9.87	25.00	246.75
2+150	8.82	9.85	25.00	246.25
2+175	12.05			
2+200	11.84	10.44	25.00	261.00
2+225	12.50	12.17	25.00	304.25
2+250	12.13	12.32	25.00	308.00
2+275	9.49	10.81	25.00	270.25
2+300	10.23	9.86	25.00	246.50
2+325	11.56	10.90	25.00	272.50
2+350	12.24	11.90	25.00	297.50
2+375	11.89	12.07	25.00	301.75

ŋ · , . **F**.

2+400	18.56	6.67	25.00	166.45		
2+425	12.16	15.36	25.00	384.00		
2+450	10.50	11.33	25.00	283.25		

Total excavar en las cañadas (m^3) = 103845

•

INVENTARIO DE OBRAS EN LOS DIFERENTES DRENES Y CAMADAS

	•	
		-
		-
		_
		p. 🕶
		-
		•
		_
		•
		_
		•
		-
		•
		٠
		_
		•
		ì
		1
		•
		•
		•
		v
		1
		لر
		$oldsymbol{\xi}_i$
		1
		1
]

INVENTARIO DE OBRAS EN LOS DIFERENTES DRENAJES Y CAÑADAS

Alcantarillas

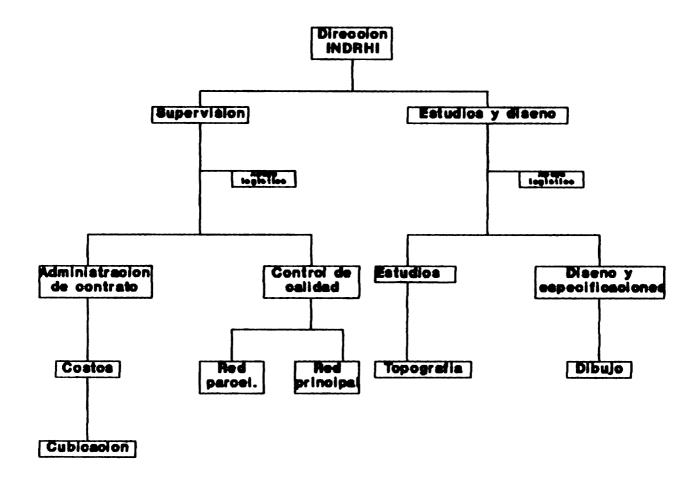
Cantidad	Lugar	Lecalización	Tamaño diam. (pulg)				
1	D - Lambedero	E - 3+129	48	6.00	58178.50	58178.50	4654.28
1	•	E - 4+060	•	•	•	•	•
1	•	E - 4+374	•	•	•	•	•
1	•	E - 5+140	•	•	•	•	•
1	•	E - 5+245.85	•	•	•	•	•
1	•	E - 2+700		4.00	50756.36		
1	" (prolongación)			6.00			
1	-	E - 1+110	36		46170.91		
l Fotal=9	•	E - 1+660	42	4.00	50756.36	50756.36	40 60.51
1 Yotal=1	P. Martin - Magueyar	E- 2+560	42	4.00	50756.36	50756.36	4060 .51
1 Total=1	D - Lere No.1	E - 0+720	36	3.00	46756.36	46756.36	3740.55
1	D - La Ceiba No.2	E - 0+220	30	4.00	46072.16	46072.16	3685.77
3	B - La Ceiba No.1					46072.16	
•	•				56134.54		
Total:4	•	E - 0+760			46170.91		
1 Total=1	D - La Columna No.2	E - 0+300	36	4.00	48227.88	48227.88	3858.23
1	D - Loro No.2					52341.82	
1 Total = 2		E - 1+050	36	3.W	50284.85	50284.85	4022.79
1 Total=1	D - El sillôn	E - 0+920	36	5.00	50284.85	50284.85	4022.79
1 Total=1	D - Columna No.1	E - 0+310	36	3.00	46170.91	46170.91	3693.67
1 Fotal=1	C - DS 9/01			5.00	50284.85	50284.85	4022.79
1 Total=1	C - 50 - 1	E - 0+381.59			47590.20	47590.20	380 7.22
2 Total=2	C - San Antonio	• • • • • • • • • • • • • • • • • • • •	36		52341.82	104683.64	8374.69

		Costo Tatal ea	alcant	arillae (Hee) :		128476 49
2	C - La Ceiba		48	5.00	55148.75	110297.50	8623.80
1 Total=1	C - Podre Sanchez		42	6.00	56134.54	56134.54	4490.76
3 Total=3	C - La Columna		42	3.00	49067.27	144201.81	11536.14

_	٠			
٠.	í	A	•	

Dren	Caidas (m)	Localización	Gavio no s (a ³)	P.U Valor (US\$) (US\$)
Lero No.2	●.97	0 + 960	29.57	48.71 1,440.35
	●.72	1 + 440	26.00	1,266.46
Loro No.1	1.00	1 + 390	31.14	1,516.83
Columna No.1	1.05	0 + 420	30 .71	1,495.88
Columna No.2	●.60	0 + 400	24.29	1,183.17
Columna No.5	0.54	0 + 420	23.43	1,141.2 8
	0.53	0 + 180	23.29	1,134.46
Columna No.6	0.40	0 + 060	21.43	1,043.85
	1.05	0 + 420	30.71	1,495.88
	0.48	0 + 540	22.57	1,099.38
Hates	1.32	1 + 260	34.57	1,689.90
	0.55	2 + 520	23.57	1,148.09
	0.47	2 + 760	22.43	1,092.56
	0.71	2 + 760	25.86	1,259.64
	0.93	2 + 940	29.00	1,412.59
	0.52	3 + 000	23.14	1,127.15
	0.83	3 + 360	27.57	1,342.93
Mates No.2	0.72	0 + 420	26.00	1,266.46
	0.78	0 + 780	26.86	1,308.35
Zabala	0.75 0.46 0.52 0.75 0.57 0.67	0 + 180 0 + 480 0 + 780 0 + 900 2 + 100 2 + 820 4 + 620	26.43 22.29 23.14 26.43 23.86 25.29 23.00	1,287.41 1,085.75 1,127.15 1,287.41 1,162.22 1,231.88 1,120.33
Zabala No.1	0.42	0 + 540	21.71	1,057.49
Zabala No.2	0.45	0 + 120	22.14	1,078.44
	0.65	0 + 540	25. 0 0	1,217.75

١.,]


Zabala No.3	0.69	0 +	060	25.57	1,245.51
Sillén	0.89	0 +	120	28.43	1,384.83
	0.67		600	25.29	1,231.88
	1.66		960	25.14	1,224.57
	1.06	1 +	000	30.86	1,503.19
	0.57	1 +	200	23.86	1,162.22
	●.57	1 +	560	23.86	1,162.22
Lambodoro	0.82	1 +	000	28.15	1,371.19
	0.41	1 +	440	21.57	1,050.67
	0.41	2 +	040	21.57	1,050.67
	0.44	2 +	400	22.06	1,071.62
	0.54	2 +	520	23.43	1,141.28
	0.42	2 +	640	21.71	1,057.49
	0.48	2 +	200	22.57	1,099.38
	1.48	4 +	020	22.57	1,099.38
	0.64	4 +	300	24.86	1,210.93
	0.75	4 +	560	26.43	1,287.41
Sanchez - La Urca	0.78	0 +	060	26.86	1,308.35
	1.14	0 +	420	32.00	1,558.72
Pedro H.H.	0.59	1 +	020	24.14	1,175.86
	1.24	1 +	320	33.43	1,628.38
Narciso Dotal	0.50	1 +	200	22.85	1,113.02
	0.58	1 +	320	24.00	1,169.04
	0.77	1+	500	25.2 9	1,231.88
	●.47	1 +	600	22.43	1,092.57
	0.75	1 +	860	26.43	1,287.41
Coiba No.3	0.44) +	660	22.00	1,071.62
Pichinga	0.42	1 +	260	21.71	1,057.49

Cesto Total = US\$ 70,163.83

(,)

ESTIMACIÓN DE COSTOS ESTUDIOS. DISEÑO Y SUPERVISIÓN ORGANIGRAMA

ORGANIGRAMA ESTUDIOS, DISENO Y SUPERVISION

1

J

Costos directos. Clase I

Personal	Salario	Tiempe	Costos	por año (US\$)	Costo total (US\$)
	Densual (US\$)	asignado (neses)	l ^{er} año ¦	2 ² año	
Ing. Residento	3,000	14	36,000	12,000	48,000
Ing. de Contrato	2,500	14	30,000	10,000	40,000
Ing. Costos y Cub.	2,000	14	24,000	8,000	32,000
Ing. Control Calidad	2,000	14	30,000	10,000	40,000
Ing. Asist. Calidad	2,000	14	24,000	8,000	32,000
Ing. de Diseño	2,500	14	30,000	10,000	40,000
Ing. de Estudio	2,000	14	24,000	8,000	32,000
Ing. Topografo	1,500	14	18,000	6,000	24,000
Sec. Administrativa	1,000	14	12,000	4,000	16,000
Dibujante	600	14	7,200	2,400	9,600
Miveladores (2)	600	14	14,400	4,800	17,200
Sec. Archivista	400	14	4,800	1,600	6,400
Choferes (2)	300	14	7,200	2,400	9,600
Portamira (4)	150	56	7,600	2,400	10,000
Obrero (1)	120	14	1,440	480	1,720
Conserje (1)	120	14	1,440	480	1,960

Estudios y diseño : US\$ 112,520 Supervisión : US\$ 249,920

Costos directos. Clase II (vehiculos y equipos)

Cantidad	Vehiculo o equipo	Costo unitario (US\$)	Costo total (US\$)
4	Camioneta pick-up	8,000	32,000
1	Camioneta doble cabina	6,500	6,500
3	Niveles	1,500	4,500
1	Distanciometro	2,800	2.800
4	Miras	200	800
3	Calculadora de cinta	600	1,800
2	Planimetros	1,500	3,000

Total : US\$ 51,400

1			
-			
	•		
]			
61 ,			
بم			
•			

Costos directos. Clase IV

- Combustible

13,800 gl. gasolina a US\$ 1.60 c/u US\$ 22,080

- Mantenimiento

US\$ 500/año/vehiculo US\$ 2,917

- Viajes al exterior (5) a US\$ 1,100 c/u US\$ 5,500

Total: US\$ 50,497

Costos indirectos

Item	% del SBD	Supervisiön (US\$)	Estudios y diseño (US\$)
Administración	12	29,990	13,502
Seguros	6	14,995	6,751
Gastos generales	7	17,494	7,876
Cargas sociales	22	54,982	24,754
Honorarios	15	37,488	16,878

Total: US\$ 154,949 US\$ 69,761

Resumen de costos

Tipo de costos	Costo por actividad en US\$ Supervisión Estudios y diseño		
Costos directo			
Clase I	249,920	112,520	
Clase III	35,421	15,076	
Costos indirectos	154,949	69,761	
Total	440,290	197,357	

Nota: Los costos clase II (equipos y vehiculos), se estimaron en este anexo y se presentarán en el resumen de costo del subproyecto.

COSTO Y FINANCIAMINETO MEMORIA DE CALCULO

17.4

Q

1.- COSTO Y FINANCIAMIENTO

- 1.- Drenes Subterrâneos
- 1.01.- Costos de materiales
 - Tubos de PE corrugado, diâmetro 160 mm. : US\$ 1.98/Ml.

Cantidad requerida: 25,440 m.

: US\$ 50,371

- Tubos de PE corrugado, diâmetro 100 mm. : US\$ 1.32/Ml.

Cantidad requerida: 196,552 m.

: US\$ 259,448

- Tubos de salida y piezas auxiliares : US\$ 0.006/Ml.

: US\$ 13,320

- Grava no clasificada (en pie de obra) : US\$ 10/m3

Cantidad requerida : 23,586 m³

: US\$ 235,860

Sub - Total : US\$ 558,999

- 1.02.- Costo de maquinarias
 - Drenadora : US\$ 49.2/hora

221,992

- Tiempo requerido : ---- = 4,189 hora

53 m/hora

: US\$ 206,099

- Excavadora hidraulica : US\$ 49.2/hora

 $196,552 \text{ m} \times 2.5 \text{ m}$

- Tiempo requerido :----- = 983 hora

100 m \times 5 m/hora

: US\$ 48,363

- Motoniveladora : US\$ 35.6/hora

1,1

1

221,992

- tiempo requerido : --- = 1,168 hora

190 m/hora

: US\$ 41,580

Sub - Total = US\$ 296,042

1.03.- Transporte de material (tuberia) : US\$ 0.05/Ml.

Cantidad a transportar: 221,992 m.

Sub - Total = US\$ 11,099.60

Total materiales + Maquinarias : US\$ 866,140

1.04. - Costo de ejecución

- Administración : US\$ 103,936

- Seguros y fianzas : US\$ 56,299

- Gastos generales diversos : US\$ 60,629

- Costo de capital : 60,629 US\$

- Utilidades : US\$ 86,614

Total: US\$ 368,109

Gran total : US\$ 1,223,150

2.- Drenes abiertos

1.06.- Costos de maquinarias

- Excavadora hidraulica : US\$ 49.2/hora

47,650 m

-- = 9,530 hora - Tiempo requerido : -5 m/hora

: US $$49.2/hora \times 9,530 hora = US$468,876$

- Tractor : US\$ 56.8

- Tiempo requerido :

47,650 m.

Tendido de material : ------ = 44 hora

1,100 m/hora

11,230 m.

Construcción de berma : -- = 113 hora

100 m/hoar

•				
, • • •				
•				
4				
1				
1				
, p . ;				
45 (
		. *		
Q				
•				
1				

US\$ $56.8 \times (44 \text{ hora} + 113 \text{ hora}) = US$ 8,918$

Sub - Total = US\$ 477,794

1.07.- Obras complementarias

- Caidas : US\$ 70,163.80

- Alcantarillas : US\$ 123,470.70

Sub - Total : US\$ 671,428.00

1.08.- Costo de ejecución

- Administración: US\$ 80,571

- Seguros y fianzas : US\$ 43,642

- Gastos generales : US\$ 47,000

- Costos de capital : US\$ 47,000

- Utilidades: US\$ 67,143

Sub - Total : US\$ 285,356

Gran total: US\$ 956,784

65.

