IICA

PNCA

CRIA CONTROLADA DE CACHAMA

1984

INSTITUTO INTERAMERICANO DE COOPERACION PARA LA AGRICULTURA-IICA Oficina en Colombia

PROGRAMA NACIONAL DE CAPACITACION AGROPECUARIA-PNCA

CURSO SOBRE PREPARACION Y EVALUACION DE PROYECTOS AGROPECUARIOS

PROYECTO PARA LA PRODUCCION CONTROLADA DE CACHAMA EN MARANDUA

Bogotá, del 3 de septiembre al 12 de octubre 1984

Digitized by Google

CONTENIDO

				Pág.
INTR	ODUC	CION		
ı.	GEN	ERAL	IDADES	1
	Α.	Sínt	cesis del Proyecto	1
	В.	Imp	ortancia a nivel nacional	3
	C.	Imp	ortancia a nivel subsector	4
	D.	Obj	etivos	5
II.	DIAGNOSTICO GENERAL DE LA ORINOQUIA COLOMBIANA			
	Α.	Gen	eralidades de la Orinoquía Colombiana	6
		1.	Fisiografía	6
		2.	Población	7
	В.	Con	diciones Socioeconómicas en la Comisaría del Vichada	8
		1.	Salud	9
		2.	Educación	10
		3.	Tenencia y explotación de la tierra	10
	C.	Dia	gnóstico del Area del Proyecto	13
		1.	Localización	13
		2.	Características de la zona	13
		3.	Clima	17
		4.	Vegetación	23
		5.	Infraestructura social	24
		6.	Infraestructura física	24
		7.	Recursos naturales	25
	D.	Con	sideraciones socio—económicas al plan global	
		de	colonización en Marandúa	28
III.	ANALISIS DE MERCADOS			31
	Α.	Ofe:	rta de Productos Pesqueros	31
		1.	Oferta pesquera del medio natural con influencia	
			al provecto	31

		2.	Oferta pesquera del proyecto piscícola	34
		3.	Proyección de la oferta piscícola	35
	В.	Dem	anda y Consumo de productos pesqueros	38
		1.	Análisis de demanda en otros mercados	38
		2.	Análisis de demanda como mercado local	40
IV.	ING	ENIE	RIA DEL PROYECTO	
	Α.	Alt	ernativas del Estudio	43
		1.	Tamaño de los estanques	43
		2.	Equipos requeridos	43
-	в.	Alt	ernativas Consideradas	45
	C.	0br	as de Ingeniería	46
		1.	Consideraciones generales en la construcción de	
			estanques	46
		2.	Diseño de obras pára el proyecto	49
٧.	TEC	NOLO	GIA DE MANEJO DE LA ESPECIE	54
	Α.	Asp	ectos Generales de la Cachama	54
		1.	Alimentación	55
		2.	Longitud	55
		3.	Calidad del agua	56
		4.	Captura	56
		5.	Importancia de las especies	57
		6.	Reproducción	57
	В.	Pre	paración de estanques	58
	C.	Sie	mbra	59
	D.	Car	acterísticas deseables del agua	59
	E.	Ali	mentación	61
	F.	Pro	blemas en manejo del cultivo	61
	G.	A1t	ernativas tecnológicas de la especie	64

VI.	INV	ERSIONES, COSTOS Y EVALUACION DEL PROYECTO	
	Α.	Alternativas de inversión analizadas	66
	В.	Flujo de fondos de inversión	68
		1. Costos de inversión	68
		2. Costos de operación	69
		3. Punto de equilibrio	71
		4. Flujo de caja y capital de trabajo	71
	C.	Plan de ingresos y egresos con el F.F.N.I	71
VII.	CON	CLUSIONES Y RECOMENDACIONES	72
	Α.	Conclusiones	72
	В.	Recomendaciones	73
		BIBLIOGRAFIA	74
ANEX	0S:		
Anex	o 1:	Balance hídrico	77
		Requerimientos de agua para el estanque de 5.000 m ²	78
		Requerimientos de agua para el estanque de 3.000 m ²	79
Anexo	o 4:	Costos para la construcción de un estanque de 3.000 m ²	
		con motobomba	80
Anexo	5:	Costos de operación de un estanque de 3.000 m ² con	
		motobomba	81
Anex	o 6:	Costos de construcción de un estanque de 3.000 m ²	
		con molinos de viento	82
Anexo	o 7:	Costos de operación de un estanque de 3.000 m ² con	
	_	molinos de viento	83
Anexo	o 8:	Costos de construcción de un estanque de 3.000 m ²	
	•	con energía solar	84
Anexo	o 9:	Costos de operación de un estanque de 3.000 m ² con	0.5
	1.0	energía solar	85
anexo	10:	Costos de construcción de un estanque de 5.000 m ² con	00
		motobomba	86

Anexo	11:	Costos de operación de un estanque de 5.000 2	
		con motobombas.vi.a	87
Anexo	12:	Costos de construcción de un estanque de 5.000 m^2	
		con molinos de viento	88
Anexo	13:	Costos de operación de un estanque de 5.000 M ² con	
		molinos de viento	89
Anexo	14:	Costo de construcción de un estanque de 5.000 m ² con	
		energía solar	90
Anexo	15:	Costos de operación de un estanque de 5.000 m ² con	
		energía solar	91
Anexo	16:	Plan de ingresos y egresos con el flujo neto de inver-	
		siones para el estanque de 5.000 m ² con motobomba	92
Anexo	17:	Flujo de caja para un estanque de 5.000 m ² con	
		motobomba	93

INTRODUCCION

El Gobierno Nacional se encuentra interesado dentro de su política de fronteras de crear un polo de desarrollo en la Comisaría del Vicha-da, teniendo como eje de partida la construcción de una Base Aérea Militar para crear un asentamiento humano con características muy definidas.

El Comité de Coordinación del Proyecto Marandúa, nombre que se ha dado a este proyecto de asentamiento se encuentra realizando una serie de páneles y reuniones de intercambio de ideas y planes sobre la manera más tećnica y adecuada para iniciar la conformación de dicho asentamiento. Por solicitud de la Secretaría Ejecutiva del Proyecto Marandúa a la Dirección del PNCA (IICA) y en coordinación con el INDERENA se propuso la idea de realizar un estudio de un Proyecto de agricultura en la región del Vichada.

Un grupo de profesionales del sector agropecuario lo desarrolló como trabajo práctico en el curso sobre Evaluación de Proyectos, ubicando el objetivo en definir una Unidad tipo de explotación de la cachama en confinamiento (especie piscícula nativa de los Llanos Orientales).

Se analizarán diferentes alternativas técnicas en desarrollo del objetivo propuesto con el fín de establecer la dimensión más adecuada para el proyecto. Dadas las condiciones en que el proyecto debe implementarse; principalmente debido a la carencia de infraestructura física e institucional de la zona, la rentabilidad del mismo es poco atractiva.

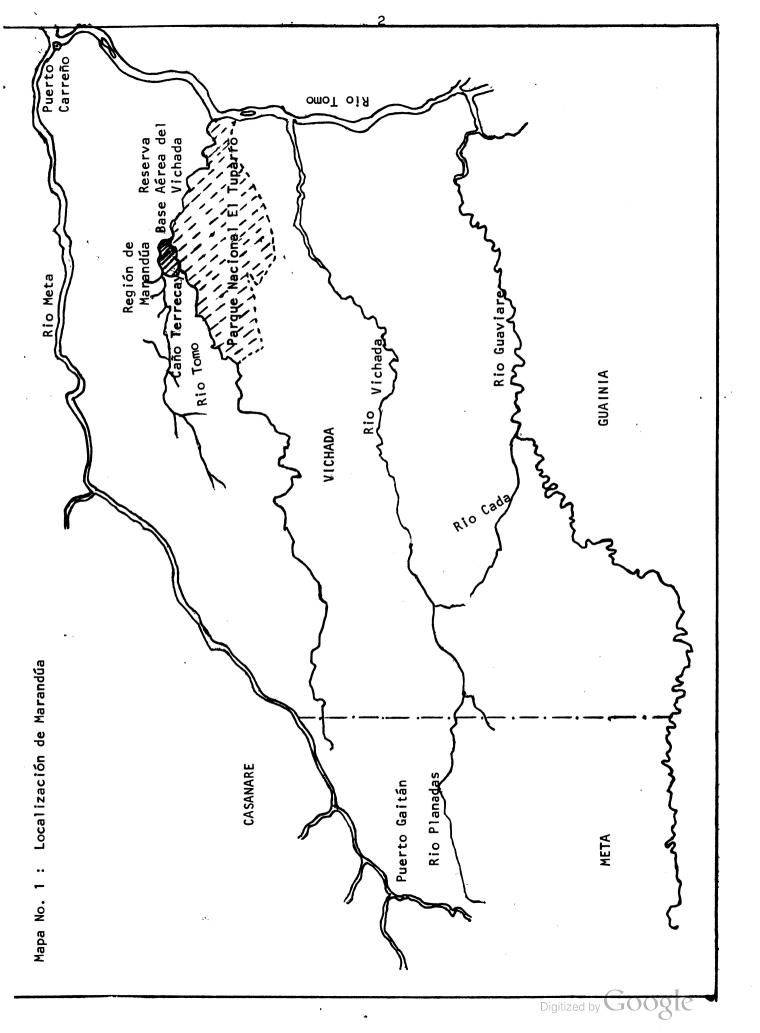
Sinembargo, consideramos que este estudio presenta aportes significativos para que en el futuro, la agricultura pueda constituírse como una alternativa para proveer de alimentos y complementar los ingresos de los colonizadores que se asiente en esta región del país.

I. GENERALIDADES

A. Síntesis del Proyecto

Los principales objetivos son:

- Desarrollar unidades familiares de producción piscícola en la región de Marandúa
- Proveer de alimentos e ingresos a los colonos que participarán en el Proyecto de Colonización.


Prestatarios y ejecutores

Los ejecutores del proyecto serán los colonos con vocación pesquera quienes, individualmente, explotarán una Unidad Económica productiva. El desarrollo de la actividad requiere la participación de entidades del Estado especializadas en materia de producción y comercialización pesquera al igual que en la prestación de servicios de infraestructura regional, a fin de disminuír algunos costos de obras de ingeniería que demanda el proyecto.

a. Zonas que abarca el proyecto

No existe una microlocalización de las áreas potenciales para la ejecución del proyecto, debido a que actualmente se encuentra en proceso de estructuración elprograma Marandúa. Sin embargo éste se realizará en un área localizada al norte del rio Terecay y de la Base Aérea del Vichada, tal como lo muestra el Mapa No. 1.

V

b. Producción calculada

Se calcula que en el año II, las unidades económicas diseñadas tendrán una producción anual neta de 2.670 kgs. (estanque de 3.000 m 2) y de 4.455 kgs. (estanque de 5.000 m 2). Se estima que durante el tiempo de vida del proyecto esta será de 40.050 kgs. y 66.825 kgs., respectivamente.

c. Costos del proyecto

El proyecto tiene un costo de 1'771.347 (3.000 m^2) y de - 3'142.586 (5.000 m^2) utilizando para ambos motobomba a gasolina. Las tasas internas de retorno son de 1.8% y 2.8% para las alternativas seleccionadas por este estudio 3.000 m^2 y 1.500 m^2 , respectivamente.

d. Duración del proyecto

Se estima en 15 años la duración del proyecto.

e. Beneficiarios del proyecto

Con la producción del estanque de 5.000 m² (4.455 kgs/año), ini - cialmente se prevé que los beneficarios del proyecto podrían ser 69 familias de pescadores artesanales de la zona del río Meta que mantiene mo- - vimientos migratorios en esta parte de los Llanos Orientales y potencialmente pueden ser familias colonizadoras del proyecto Marandúa. Cada familia de estos pescadores consta aproximadamente de 7 personas.

B. Importancia a Nivel Nacional

El presente proyecto busca contribuír a los planes del gobierno nacional que, entre otros, pretenden fortalecer económica y socialmente las zonas fron-

terizas (Decreto 3448 de diciembre 7 de 1983 "Estatuto Especial para las zonas fronterizas) e incorporar una vasta extensión del territorio nacionala la economía del país, como lo es la Orinoquía colombiana, a través de proyectos de colonización dirigida.

De acuerdo con el incremento de producción en la zona, se favorecerán, además, los mercados regionales , lo cual propiciará un aumento en el consumo per-cápita nacional, que es actualmente de 4.3 kg. por año.

C. Importancia a Nivel Subsector

La zona pesquera del río Meta, se puede considerar típica de la región de los Llanos Orientales del país. El río Meta y los demás afluentes del Orinoco, así como otras zonas hidrológicas, son reservas pesqueras nacionales
las cuales se irán incorporando a la economía nacional, cuando se apliquen
políticas y desarrollen técnicas favorables que se enmarquen. dentro de una
planificación de los problemas que actualmente limitan su explotación. Para
dar una idea de la magnitud de la producción pesquera, controlada a través
de su movilización en la zona del Meta, se indica que ésta alcanzó a
1º130.269 kgs. en 1980; para las especies bagre amarillo, bagre pintado, bagre valentón, cachama y dorado.

La producción en confinamiento (estanques) de cachama, empleando la mediana tecnología generada en Colombia para esta especie a nivel experimental, incidirá notoriamente en el subsector pesca, pues servirá de modelo para incrementar su producción en estanques en otras regiones cálidas del país y al mismo tiempo este sistema permitirá llegar a normalizar la oferta pesquera de aguas continentales, condicionadas por la estacionalidad en las épo-

,

.

-

cas de aguas bajas y aguas altas. La acuicultura en climas cálidos es una actividad relativamente nueva en el país.

D. Objetivos

1. Generales

- a. Desarrollar la industria piscícola en Marandúa.
- b. Incrementar los ingresos de los colonos
- c. Proporcionar alimento de origen animal a los pobladores.

2. Específicos

- a. Producir carne de pescado cachama (<u>Colossoma</u> spp) en confinamiento con fines de autoabastecimiento y comercialización local y/o regional, a través del diseño de una unidad económica productiva.
- b. Creación de fuentes de empleo en forma integrada tanto en acuicultura como en pesquería en los ríos de la región.

II. DIAGNOSTICO GENERAL DE LA ORINOQUIA COLOMBIANA

Para una mayor comprensión de la contribución económica y social que tendrá la ejecución del proyecto piscícola en el proceso de colonización dirigida en Marandúa y de éste, dentro del contexto de la Orinoquía colombia - na, se ha considerado conveniente tener en cuenta algunas características del estado actual de desarrollo de la Orinoquía y la Comisaría del Vichada.

A. Generalidades de la Orinoquía Colombiana

La Orinoquía Colombiana abarca una extensión aproximada de 26 millones de hectáreas (251.304 kms²), de los cuales el 19% unas 5.1 millones de has corresponden a la Orinoquía mal drenada, caracterizada por su relieve plano, con pendientes suaves y encharcamientos e inundaciones por períodos prolongados.

Se define la Orinoquía con un criterio hidrográfico. De esta manera, geográficamente comprende desde la Cordille a Andina Oriental hasta límites con Venezuela, al norte de los ríos Arauca y Meta; al Este del río Orinoco. Al sur y sureste se aprecia una zona de transición, hasta la Cuenca Amazónica, en diagonal a partir del río Vichada hacia el río Guaviare y la Serranía de la Macarena.

1. Fisiografía

Fisiográficamente, a grandes rasgos, pueden definirse cinco subregiones:

a. Piedemonte, adyacente a las estribaciones de la Cordillera Oriental; en general con suelos más fértiles y cubiertos originalmente en su ma -

yor parte de selvas húmedas.

- b. Llanos de Arauca y Casanare, situados al Norte del curso del río Meta, cuya cobertura vegetal consta principalmente de sabanas naturales inundables y no inundables, que alternan con selvas de galería.
- c. La Altillanura, situada entre los ríos Meta y Guaviare, parcialmente disectada y ocupada principalmente por sabanas y con una red hidrográfica menos compleja. En esta subregión está situada la Comisaría del Vichada y aquí se desarrolla el Proyecto Marandúa.
- d. El área esencialmente selvática de las llanuras adyacentes al río Guaviare que incluye además las cuencas de los ríos Inírida y Atabaco y por el N.conectada con el piedemonte.

e. La Sierra de la Macarena

De todo este vasto territorio, solamente la parte que se desprende del piedemonte cordillerano se encuentra relativamente integrada al proceso económico del interior del país. En la medida en que se interna "llano adentro", las características de aislamiento se hacen más evidentes, la in-fraestructura de servicios y comunicaciones más deficiente y las condiciones de la población son más precarias y de solución inmediata.

2. Población

La densidad de población se presenta en 4.7 hab. /km² en el Arauca y 3.4 hab /km² en el Meta, mientras que en el Vichada alcanza a 0.3. hab/km²

Respecto de la población indígena, alcanza aproximadamente unas 26.000

i e e e e e e e e e e e e e e e e e e e	
	•
	:
	į
	,
Digitized by GOOgle	

personas, representadas en unos 25 grupos étnicos que se encuentran esta - blecidos principalmente en la Comisaría del Vichada, en las riberas del río del mismo nombre y sus afluentes, lo mismo que en las aguas del río Guaviare, en la parte Oriental del Departamento del Meta y algunos asentamientos en las Intendencias del Casanare y Arauca.

Los poblados no sobrepasan los 50 habitantes (con excepción de los poblados establecidos alrededor de las misiones), en su mayoría relacionados por parentesco y que subsisten primordialmente por el cultivo de la yuca y el plátano, al lado de la pesca, la caza y la recolección. Así su dieta prácticamente depende en un 100% de lo que cultivan y les proporciona el medio natural al que conocen detalladamente, lo que les permite utilizar, de acuerdo a los ciclos, una variada dieta. Este conocimiento de los ciclos naturales y los que ellos conllevan, determinan en cierto modo sus movimientos en forma de recurso, es decir, los grupos seminómadas y nómadas dependen fundamentalmente de estos eventos naturales. Así por ejemplo, el desove de las tortugas en las riberas del río Meta y Orinoco, en el verano es un acontecimiento bastante importante para estos hombres, pues representa la consecución fácil de alimento.

B., Condiciones Socioeconómicas en la Comisaría del Vichada

Son muchas las variables que se usan para describir las condiciones de vida de una población. Sin embargo, debido a la falta de información y a las condiciones objetivas de dificultades para conseguirla, solo se describen a continuación algunos aspectos y algunas variables como salud, educación, te-

nencia y explotación de la tierra, que lógicamente son determinantes en las condiciones socioeconómicas de la población y de la Comisaría.

1. Salud

El servicio de atención médica en la Comisaría del Vichada depende directamente del Servicio Seccional de Salud y está conformado por el siguiente personal:

- 14 médicos
- 8 odontólogos
- 1 ingeniero sanitario
- 142 auxiliares
- 8 promotores de saneamiento ambiental
- 50 promotores indígenas y el personal administrativo necesario.

El gran esfuerzo que se hace en esta región, de casi 100.000 km² por atender a la población no es suficiente para llegar a toda ella y mucho menos en forma oportuna dadas las grandes distancia a recorrer.

Existen hospitales en Puerto Carreño, la Primavera, Santa Rosalía y las Gaviotas. Además de estos hospitales, existen 18 puestos de salud atendidos por auxiliares de enfermería y promotores que contribuyen a aminorar el problema de la salud.

Las principales enfermedades que se presentan son las endémicas tropi - cales como el paludismo y las gastrointestinales debido a la impotabilidad del agua.

En la población indígena, la tuberculosis ocupa un lugar muy importante. En estos grupos se han efectuado campañas de vacunación masiva, pero por la falta de recursos es imposible lograr su erradicación o al menos control y atención adecuada.

También se ha presentado en esta Comisaría brotes de fiebre amarilla, especialmente en Cumaribio y Cejal sobre el río Guaviare.

2. Educación

La educación para los adultos es deficiente y casi inexistente, a consecuencia de la falta de recursos. No hay información sobre analfabetismo, pero en muchas poblaciones los únicos alfabetos son los maestros y los alumnos de la escuela.

3. Tenencia y explotación de la tierra

a. Areas en reservas indígenas

Las mayores áreas de reservas indígenas de la Orinoquía se en -cuentran en el Vichada. En esta Comisaría se hallan 14 comunidades indígenas, que comprenden 12.150 habitantes, dispersos en 2'463.085 has.

b. Areas de colonización

A pesar de las dificultades de comunicación, en el Vichada se mantienen y desarrollan tres importantes frentes de colonización. El primero se ubica sobre el río Meta en donde se encuentran poblaciones importan tes como Santa Rosalía, La Primavera y Puerto Carreño. El segundo frente de colonización se ubica sobre el río Vichada en donde se asientan pobla

ciones como San José de Ocuna y Santa Rita. El tercer frente se ubica sobre elrío Guaviare, sus principales centros poblados son Amanaven localizado en la desembocadura del río Guaviare en el Orinoco y Pueblo de Piapocos localizado aproximadamente en la mitad del recorrido de este río, por el territo rio del Vichada, y Totumal que cuenta con aeropuerto.

Estos tres ríos, sobre los cuales se han establecido los pobladores del Vichada, son navegables.

Las áreas de colonización han sido sustraídas a reservas forestales o indígenas. En estas áreas se produce la agricultura tradicional

La margen derecha del río Meta y las márgenes de los ríos Vichada y

Guaviare han sido invadidas por colonos que llegan con un machete a "tum bar monte", y luego a sembrar maíz. La destrucción de los recursos naturales es bastante grave en esta zona de la Comisaría.

La vía fluvial de transporte, como única vía de comunicación permanente, ha conducido a los colonos a ocupar las cercanías de los ríos con los consecuentes perjuicios que ello implica en el equilibrio ecológico.

Los tres ríos que hemos señalado anteriormente agrupan a través de su curso a los colonos que han llegado desde dintintas regiones del país, ex pulsados por la presión sobre la tierra y con el deseo de mejorar sus condiciones de vida. No hay cálculos sobre la tenencia de la tierra; pero se puede afirmar que el promedio por predio, en estas regiones se encuentra por encima de las 1000 has.

Las áreas de colonización ubicadas en las cercanías de los ríos se dedican a los cultivos de algodón, maíz, yuca, plátano y arroz; hay también algo de cacao, café y caña. La producción de algodón (margen derecha del río Meta) es importante y a pesar de la falta absoluta de tecnificación, los rendimientos alcanzan las cuatro toneladas por ha. Las dificultades de transporte terrestre obligan a los colonos a vender la producción en Venezuela, sin existir la posibilidad de que el Estado presente una alternativa a esta situación.

Las posibilidades de desarrollo agrícola y ganadero son importantes en estas regiones introduciendo alguna tecnificación.

En el resto de la Comisaría la extremada baja calidad y fertilidad de los suelos no los hacen aptos para desarrollar una agricultura comercial intensiva.

La ganadería es de tipo extensivo, pues se requieren 10 has. de pasto natural por cabeza; a pesar de esta situación, el ganado sufre mucho en época de verano por falta de forraje, lo cual conduce a una baja considerable de peso. Es prácticamente imposible obtener ganado de más de 350 kgs de peso.

Los tipos de pastos naturales son de bajo valor nutritivo, muy débiles en los meses de verano y no resistentes, por lo cual las sabanas quedan convertidas en verdaderos desiertos.

C. Diagnóstico del Area del Proyecto

1. Localización

Marandúa es el nombre dado al lugar en donde se establecerá un asentamiento humano a través del cual y mediante una colonización dirigida se desarro - llará la Comisaría del Vichada y la Orinoquía colombiana.

La ciudadela probablemente estará localizada al Norte del río Terecay (Municipio de Pto.Carreño) y ejercerá influencia sobre un área estimada de 1'500.000 has., la cual será objeto del Proyecto de colonización.

Para el desarrollo de Marandúa se contará con la influencia que provee rá la Base Aérea del Vichada, la cual está situada en inmediaciones de la confluencia de los ríos Tomo y Terecay, al Norte del Parque Nacional El Tuparro. Esta base, con una reserva de 75.000 has., actualmente se encuentra enconstrucción y está dotada de la infraestructura necesaria (agua potable, energía eléctrica, comunicaciones, campamentos, etc.).

Se estima que Marandúa dista de Villavicencio unos 600 kms. y alrededor de 180 kms. de Puerto Carreño.

Características de la zona

a. Suelos

Gran parte de la región corresponde a materiales terciarios (Oligoceno - Plioceno). El cuaternario está representado por recubrimientos sólidos y por franjas a lo largo de los ríos principales.

De acuerdo con el relieve, en Marandúa se han descrito tres paisajes a saber:

1) Paisaje de Altillanura

Comprende el tipo de relieve mesa, con las siguientes formas del terreno: banco, cubetas, esteros, fondo de caña, reborde y medanos.

- 2) El colinado que consta de colinas en las cuales se han separado las vertientes, la cima y el entalle, como formas de terreno.
- 3) El de valle que consta de Vegas y terrazas. Las vegas se dividen en diques, vegas y orillares.

En inmediaciones de la Base Aérea predomina el paisaje de altillanura con cuatro asociaciones, siendo la más importante la asociación guayabal

. Son suelos planos, bien drenados, pendientes del 1-3 %; baja capa - cidad de intercambio catónico (CIC), pobres en bases, abundantes en alu - minio y hierro; pH entre 4.0 y 5.0 (4.5) y se encuentran limitados por texturas gruesas.

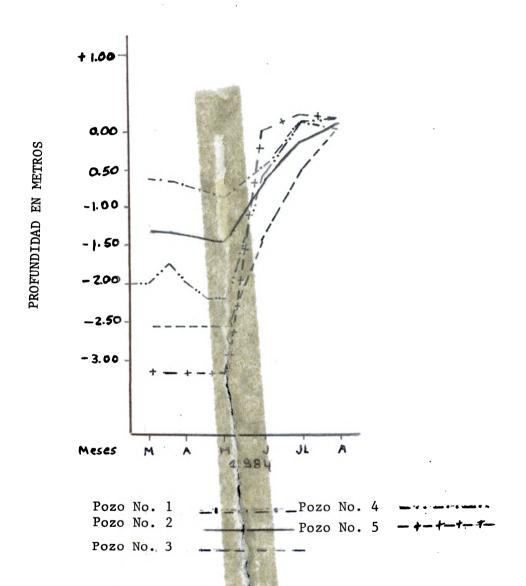
El paisaje colinado se halla localizado entre 100 y 300 m.s.n.m. en relieve plano a fuertemente ondulado con pendiente 1-3%, 3-12%, 7-12% y mayor del 12%. Climáticamente domina la transición del clima húmedo al semiárido, con temperatura promedio de 24°C y precipitación de 2.048 mm. La vegetación natural está constituída por sabanas de gramíneas (Saeta y cabeza de indio) principalmente en la zona de entalles cubiertos por árboles muy frondosos.

Actualmente su uso es ganadería extensiva hacia la vertiente derecha del río Meta y la izquierda del Terecay.

Dentro del paisaje de Valles tenemos las Ternazas, caracterizado por presentar relieve plano, con pendientes menores de 1%. Esta forma del paisaje se encuentra localizada en el río Tomo y el caño Terecay.

Los mapas de desplayamiento comprenden fajas planas localizadas a lado ylado del cauce principal del río Tomo y el caño Terecay entre las Vegas y la Altillanura; son en general las áreas más antíguas del paisaje.

b. Nivel freático


Los suelos de Marandúa, de acuerdo a su textura y estructura, pre - sentan oscilaciones del nivel freático a través del año.

Ensayos que adelanta en la Base Aérea el Instituto Geográfico Agustín Codazzi para medir las variaciones de la humedad del suelo y su incidencia en las propiedades físico químicas, mineralógicas y biológicas, del suelo indican que hay oscilaciones bien marcadas en las épocas de verano e in vierno, tal como se aprecia en la Figura 1.

En la época seca el nivel freático se encuentra entre 0.50 m. y más de3.0 m. de la superficie del suelo, de acuerdo con la textura y porosidad de los pozos bajo estudio. Durante el invierno la capa freática, se localiza entre 0.50 m. y hasta 10 cms. sobre la superficie.

Figura No. 1: Nivel Freático

MARANDUA (Vichada)

Fuente: Investigaciones sobre C aracterización y Manejo del Recurso Tierra.

Segunda Expedición Botánica IGAG, Informe Parcial 1984.

En la Tabla 1., se aprecia la textura de los suelos objeto del anterior estudio. De su observación se deduce que, a diferentes profundidades, son suelos con altos contenidos de Arena y Limo, lo cual favorece una alta permeabilidad.

Si bien en Marandúa los contenidos de arcilla son bajos, es posible una vez termine el estudio de suelos que adelanta actualmente el IGAC, hallar en algunas regiones suelos con un contenido de arcilla superior al 20%, favo - rables para la construcción del estanque y evitar, quizás, la impermeabili - zación con arcilla, proveniente de otros lugares, o su plastificación.

3. Clima

a. Humedad

Gran parte del área pertenece a la provincia de humedad "subhúme-da"

Presenta un período de lluvias de abril a noviembre y tiene una precipitación pluvial anual entre 2.000 y 3.000 mm. La evaporación media desde la superficie del agua, registrada en la estación Metereológica del Parque Nacional. El Tuparro (Vichada), durante 10 años se presenta en la Tabla No. 24

El conocimiento de la variación mes a mes de la evaporación media desde la superficie del agua, tiene gran importancia para numerosos propósitos prácticos, pues es uno de los componentes básicos del balance hídrico, el

Tabla No.: Textura de Agunos Suelos de Marandúa (Vichada)

	TAXONOMIA DEL SUELO	HORIZONTE PROFUNDIDAD	# .	RANULOMETRI	×	CLASE TEXTURAL	
							T
		Apt 0-15	2.12	48.08	10.0	Le	<u></u>
Cabeza de		Ah2 15-27	50.52	43.46	6.02	FA	-
caños v	Tvoic-	AC 27-35	55.82	40.17	4.01	FA	
napas	Tropaguent	C1 35-40	71.27	27.42	1.31	FA	
•		C2 40-55	80.22	18.98	0.80	AF	
		C3 55–65	96.95	2.22	0.83	⋖	
	`	A b 0-10	50.81	44.66	4.53	FA	
		Ah2 10-20	47.14	47.66	5.22	FA	
		AB 20.35	48.05	44.80	7.15	(b.,	18
Cubetas de	Umbraquoz	32-0	48.83	36.13	15.04	Œ,	
Decanta-		C19 70–105	54.80	24.75	20.45	FACA	
ción		C29 105–150	75.22	14.64	10.14	FA	
		Ah1 0-10	16.75	53.48	29.77	FArl	
		Ab2 10-40	12.28	30.74	56.98	Ā	
		AB 40-48	20.49	32.70	38.21	FAr	
Napas de	Tonic	BO1 48-56	35,33	33.58	31.09	FAr	
Desplaya-	[hbramox	B03 56-70	38.0	33.05	28.8	FAr	
miento		c91 70–95	45.03	29.17	25.80	Ē4	
		c93 95–120	49.75	26.47	23.78	FArA	

Fuente: INSTITUTO GEOGRAFICO AGUSTIN CODAZZI: "Informe Parcial II Expedición Botánica", Estadísticas de Suelos de Arauca. Cravo Norte y Marandúa, Bogotá, 1984.

gitized by Gogle

如在我们各位 当实际实际

統計与となった となれなった

1 2 8 8 2 1 1 2 1 8 8 2 1 8

237 / 200

Valores Mensual y Anual de la evaporación media desde la superficie del agua en la Estación Metereológica El tuparro (1966 - 1975). TABLA 2.

Nombro de													
La Estación	-	=	=	2	>	I	11/	V VI VII VIII IX X XI XIII	×	×	×	×	Total Anual
					Σ	M E S E S	S						(mm)
El Tuparro	171.8 185.8 172.0 130	185.8	172.0	130.8	118.6	110.6	109.2	30.8 118.6 110.6 109.2 117.6 116.8 118.8 133.6 147.5	116.8	118.8	133.6	147.5	1633.1
			•										
				*							-		

Estudio sobre la evaporación media desde la superficie del agua en Colombia. 1977. Fuente: HIMAT.

cual, a su vez, es indispensable para solucionar varios problemas hidrológicos (explotación de embalses, planeación y diseño de sistemas de riego, drenaje, adecuación de tierras, etc.)

En la Figura 2, se aprecia la representación del balance hídrico para la región. Se puede observar un déficit de agua en el suelo durante los meses de verano.

b. Temperatura

La temperatura ambiente media anual es superior a los 26°C

c. Vientos

De acuerdo con los datos reportados por la estación metereológica del Parque Nacional El Tuparro (Lat: 0522, Long.: 6757, Elev.: 250), se deduce que en los meses de verano (diciembre - marzo) la velocidad media delviento es de 2.6 m/seg., en las horas del medio día.

Durante el invierno (abril - Noviembre), la velocidad media es de 2.2 m/seg., también al medio día.

En la Tabla 3, se aprecian las variaciones que se presentan durante elidía.

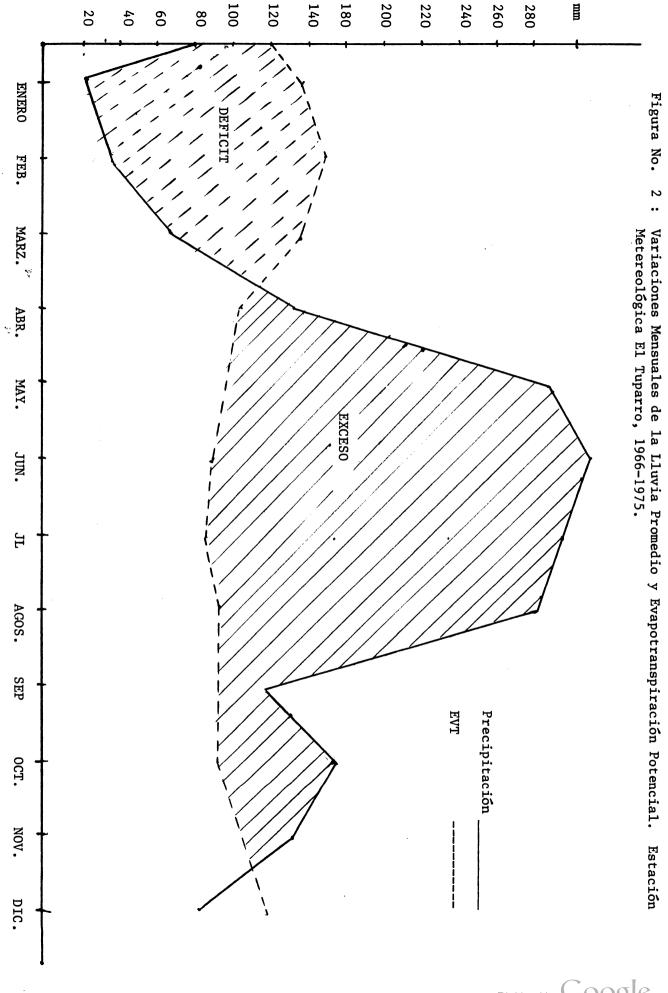


TABLA 3. Valores medios de la velocidad del viento (m/seg.) en la Estación Metereológica El Tuparro (1981 - 1983).

	Valor Medio		Hora		
	2.2	0.00	Verano (O	()	
	1.4	Invierno Verano Invierno Verano Invierno	(07)		
	2.6	Verano	· ·		
	2,2	Invierno	(13)		
	1.3	Verano	\odot		
	1.1	Invierno	(19)		
•	1.8	Anual	Valor		
	İ			1	

Fuente: Boletín sistema de información metereológica del HIMAT. Bogotá, Sept. de 1984.

4. Vegetación

La vegetación en Marandúa está constituída por las sabanas naturales interrumpidas a trechos por los bosques de galería.

En las sabanas dominan las gramas naturales de <u>Paspatum erianthum</u> (75%) y <u>Andropagon selloanus</u> (75%). Es típica la presencia de Chaparro (<u>Curatella</u> americana, en medio de los pajonales.

Los bosques de galería tienen una gran variedad de árboles y de palmas de Moriche (Mauritia flexulosa). Estos bosques presentan una altura máxima de 16. m.

a. Zurales

En la región, al igual que en algunos bajos extensos y planos de la altillanura del Meta y Vichada, se encuentran los llamados "Zurales". Estos son montículos que varían en tamaño (de 1 a 1.5 m. de altura y de 1.5 a 2 m. de diámetro), sobre los cuales existen varias teorías relativas a su formación. Los zurales tienen una diversidad biológica dependiendo de su tamaño y puede ocurrir la presencia de lombrices de tierra, hormigas, termitas y otros organismos de las familias pentatómidae, Carabidae, Gryllidae, Gryllotalpidae, para citar unas pocas.

b. Quemas

La región de los Llanos Orientales (Orinoquía) está dedicada en su mayorparte a la ganadería extensiva con praderas nativas de baja calidad En este tipo de praderas la quema periódica es una práctica casi obligatoria

para el colono y ganadero, lo cual tiene por objeto eliminar el exceso de forraje seco acumulado e inducir el rebrote de las especies nativas con un mayor valor nutritivo y mayores condiciones para el consumo animal. Esta labor se hace al finalizar la estación seca.

5. Infraestructura Social

a. Recursos Humanos

No existe una cifra precisa sobre el número de colonos asentados en Marandúa.

La comisión del INCORA que demarcó el área de reserva de la Base Aérea del Vichada, en el año de 1983, reportó la presencia de 7 colonos, los cuales se vincularon como obreros al momento de iniciarse su construcción. El área calculada es de 54 Has.

En la actualidad es casi nula la disponibilidad de mano de obra en inmediaciones de la base.

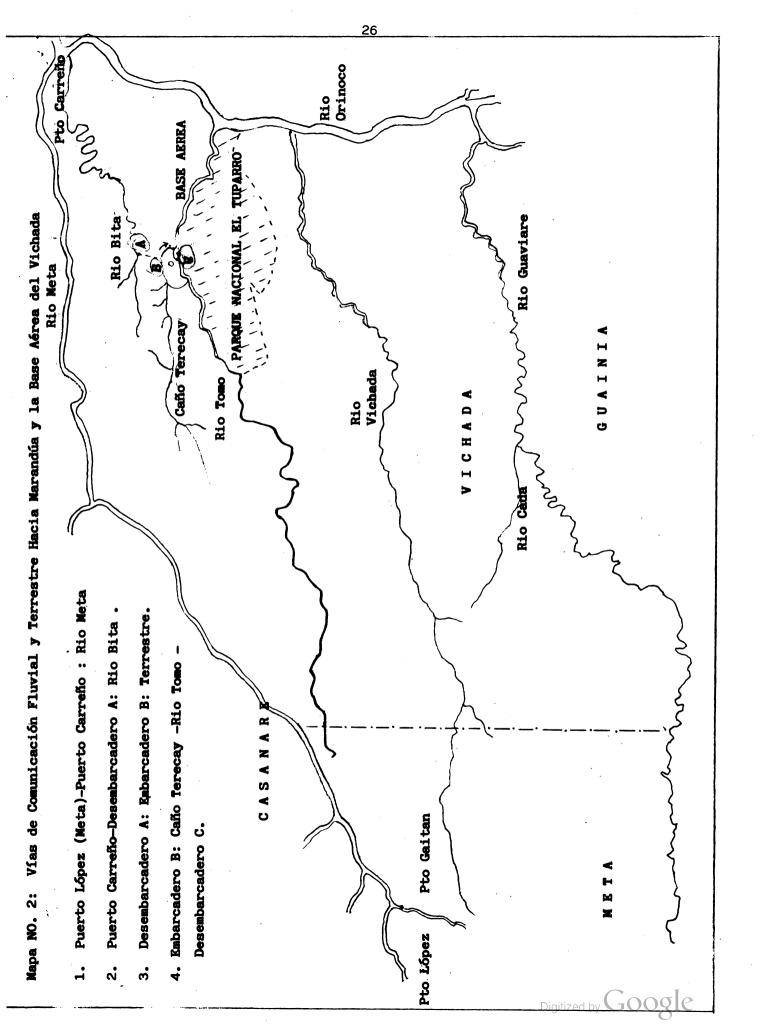
6. Infraestructura Física

En los aspectos de transporte, comunicaciones y servicios se cuenta únicamente con la infraestructura propia de la base aérea.

a. Transporte

La movilización de materiales, alimentos y personal técnico y de trabajadores vinculados al proyecto Marandúa y de construcción de la base, se hace en aeronaves de la Fuerza Aérea en vuelos programados de acuerdo a las necesidades existentes.

En epoca de verano, meses de noviembre a abril, es factible la movilización de vehículos hacia Villavicencio, a través de la sabana con los riesgos propios de la ausencia de un carreteable


Para la movilización de maquinaria pesada, materiales y combustible, la vía más utilizada es la fluvial que, partiendo de puerto López, descienda por el río Meta hasta Puerto Carreño; de allí se toma el río Orinoco y busca la desembocadura del río Bita para subir hasta proximidades del caño Cumariane. Aquí se desembarca la carga y se moviliza por vía terrestre en un trayecto de aproximadamente 40 kms, para transportarla luego a través del caño Terecay y subir por el río Tomo hasta el embarcadero de la base aérea sobre este río (Mapa 2).

Marandúa y su área de influencia se verá ampliamente favorecida en su infraestructura vial, una vez el Ministerio de Obras Públicas inicie la construcción de la carretera Puerto Gaitán (Meta) - Puerto Carreño.

7. Recursos Naturales

a. Agrícolas

Prácticamente no existe agricultura en la región. Por lo general el colono establece su vivienda en inmediaciones del bosque de galería. Una vez que tumba y quema una pequeña porción del bosque, establece una parcela en donde sin técnica alguna siembra varios cultivos, para su autoconsumo, entre ellos: plátano, yuca, maíz y caña. El desarrollo de las plantas se ve parcialmente favorecido por la materia orgánica allí acu -

THE COURT OF SECTION OF SECTION AND THE SECTION OF SECT attended to a section of the Control of the Control of

12 Ch Cla

A COMMENS OF COMMENS OF A COMMENS OF

THE SECOND CONTRACTOR CONTRACTOR AND ASSESSMENT OF THE

** 025° * 326° *

The second of the country of the second of

mulada, pues en otros sitios la calidad del suelo no permite su normal de sarrollo. El tamaño de la parcela proveé una producción que se considera insuficiente para la alimentación del colono y su familia, por lo que no hay
excedentes para su comercialización. En ocasiones se siembra arroz en extensiones no mayores de 1 ha. y su cultivo tiene limitaciones por ataque
temprano de pájaros. Las variedades Monoloya y Rexaro son las más utilizadas y el rendimiento obtenido es inferior en un 50% al logrado en otras regiones del país, debido a las condiciones del suelo y la falta de técnica
apropiada.

b. Ganadería

La falta de pastos de buena calidad, la escasez de forraje durante el verano y la baja capacidad económica de los contados colonos radicados en inmediaciones de la reserva de la base aérea, no han estimulado la tenencia de ganado vacuno, mular o equino. Es tan delicado el sostenimiento siquiera de un animal de carga, que el medio de locomoción más empleado es la bici-cleta, en las que se hacen jornadas de viaje de cinco o más horas.

La cría de cerdos, por parte de un colono localizado en un sitio muy al occidente de la base, se constituye en su actividad económica productiva. Los animales no se dejan en confinamiento ni se suministra ración especial; estos se alimentan de raíces, moriche y lo que encuentren en su deambular por la Sabana y los morichales. En la época de verano se reunen y venden a un negociante que aprovecha la estación seca para arribar con su vehículo. Un lote de 50 cerdos de 3 arrobas fue vendido a un precio unitario de \$1.000.

c. Pesca

Especies como el amarillo (<u>Paulicea lutkeni</u>), el Valentón - (<u>Brachyplatystoma vaillantii</u>) la Cachama (<u>Colossoma spp</u>) y la payara conocidos por los trabajadores de la base, se encuentran en los ríos de la región durante la época seca debido a los hábitos de vida de estas especies.

En la época de la visita (aguas altas-Sept.), se cuantificaron 2 unidades económicas de pesca y solamente se detecta un lance pesquero, denominado "guaral", para la pesca de Valentón. Posiblemente el esfuerzo pesquero en aguas bajas presenta una mayor actividad en esta época, lo cual requeriría un estudio de pesquería.

D. Consideraciones Socio-económicas al Plan Global de Colonización en Marandúa.

Dentro de los aspectos que deben considerarse en el Plan de Colonización se sugiere tener en cuenta algunas características socio-económicas pesqueras, dadas sobre la ribera del río Meta y sus tributarios.

En la población pesquera el 39.6% son analfabetos funcionales y el 60.4% carecen en forma total de alguna instrucción. Se destacan entre edades de 15 a 30 años de edad, aquella que pueden recibir algún tipo de capacitación. La edad promedio es de 37.5 años lo que indica una mano de obra relativamente joven, siendo una excelente característica para la organización de cualquier tipo gremial, socio-económico ó comunitario. La composición demográfica de los hogares pesqueros, se percibe con el 6.6% hogares sin hijos el 25.7%

tienen entre 1 y 3 hijos; el 34.7% de los hogares entre 4 y 6 hijos; el 33.0% de los hogares presentan entre 7 y 11 hijos, denotándose que el mayor porcentaje (19% de hogares) tienen entre 6 y 7 hijos.

La composición familiar del área geográfica (río Meta-Orocue) presentan 604 dependientes, distribuídas en el río Meta alto 38.6%, en el Río Meta medio 26.2% y Río Meta bajo 35.7%.

El proceso migratorio en esta área, presenta un comportamiento, tanto de hombres como de mujeres llegados de Antioquia 21.8%; Boyacá 13.7%; Chocó 7.1%; Cundinamarca 15.7%, Caldas 12.7%; Santanderes 11.7%; Tolima 10.2%; Valle 7.1%. Con respecto a la población llanera fueron consultadas 38 unidades de obsevación. Todas ellas presentan movimientos en la zona. Los movimientos de migración se presentan por cuestiones socio-económicas tales como desequilibrio social y económico que tales personas tuvieron en su región de origen. Se trasladaron hacia esta zona en búsqueda de cambios de vida. Generalmente se aduce que falta de empleo en la región de emigración no le permitió un trabajo bien remunerado por carecer de profesión definida. También por no poseer medios de producción cuando su profesión era la de agricultor; todo esto los motiva a emigrar hacia los Llanos Orientales.

En la emigración dentro del área de los Llanos se determinó que el 27.9% de los desplazamientos, lo hacen los pescadores junto con sus familias; el 19.05 se desplazan hacia otras zonas de los Llanos Orientales y un 22.4% hacia Puerto López. También se desplazan hacia poblaciones, caceríos y veredas como Remolino, Cabuyaro, Puerto Guadalupe, Puerto Gaitán. Podemos concluír que el 46.9% se desplaza dentro de los Llanos Orientales, el 22.4% emigran hacia poblacnes intermedias y el 25.2% emigran a las ciudades de Bogotá y Villavicencio y un número reducido 5.5% de personas emigran con destino desconocido.

0

the state of the s

and the second of the second o

 Se pudo apreciar que el movimiento emigratorio dentro del área se presenta con mayor frecuencia en los inmigrantes, sobre todo cuando son recién llegados a estas zonas y que posteriormente inician asentamientos, teniendo en cuenta la prosperidad que les presenta el medio natural donde se halla ubicado. El desplazamiento es proporcinado por la necesidad del trabajo (agricultura, ganadería y pesca) lleva a las familias a un constante movimiento, cuando se presentan las épocas de cosecha y cuando son pescadores natos el desplazamiento se suscita según las áreas que estos consideran productivas para la pesca y las oportunidades de vender su fuerza de trabajo como vaquero u obrero del agro. Se observó que la emigración hacia las orbes, son generalmente personas del Llano que han adquirido cierto nivel de capacitación y que según su criterio les permite organizar su vida dentro de cualquier ciudad, siendo personas jóvenes, caso contrario con las mayores de 40 años que tratan de permanecer en la región.

III. ANALISIS DE MERCADOS

El objetivo principal del proyecto es el de producir proteínas, en este caso con la especie cachama, cuyo fin es el de satisfacer la demanda alimenticia de los colonos. Como quiera que durante el proceso de colonización planificada la población se irá incrementando paultinamente y así mismo la producción de Cachama en estanque, como actividad económica de las mismas, llegará un momento en que es posible tener una sobre oferta del producto, la cual no pueda ser absorbida en la zona y por tanto debe pensarse en su comercialización fuera de ella.

A continuación en previsión de lo anterior, se presentan algunas consideraciones de la que puede ser la comercialización de este producto, teniendo en cuenta algunas características socioeconómicas de los pescadores, localizados sobre el río Meta quienes por estar relativamente cerca de Marandúa son elementos potenciales de colonización en aquella región.

A. <u>Oferta de Productos Pesqueros</u>

Es importante conocer la diferencia existente entre productos pesqueros proporcionados por el medio natural (ríos, lagunas, ciénagas y mares), los cuales son cuantificados y evaluados mediante los denominados estudios de "pesquerías", y el producto pesquero obtenido a través de la Acuicultura, la cual proporciona productos hidrobiológicos producidos en confinamiento. Dentro de esta modalidad pesquera encontramos la piscicultura, la que hace referencia exclusivamente a la cría, levante y engorde de peces en confinamiento controlado.

Con esta breve descripción entramos a analizar la oferta de pesquerías que actualmente compite con el reciente desarrollo de la piscicultura en este país y concretamente nos referimos a lo largo de este capítulo a la oferta competitiva proporcionada por la cuenca del río Meta y sus tributarios, quienes abastecen importantes centros de consumo que estarán intimamente relacionados con la creación e impulso del desarrollo piscicola en la región de "MARANDUA".

La oferta del medio natural en el área escogida para la implementación del proyecto MARANDUA y a lo largo del recorrido de observación del ríoTomo y el Terecay, solamente se cuantificaron dos lances (con guarales valentoneros) y se determinó un esfuerzo pesquero de 2 unidades económicas de pesca (UEP); es decir que la oferta pesquera es nula en época de aguas altas. Es conveniente evaluar la pesquería de esta área en épocas de aguas bajas. Por esta razón el aspecto competitivo se referirá exclusivamente a la Cuenca del río Meta.

1. Oferta pesquera del Medio Natural con influencia al Proyecto

El INDERENA ha realizado estudios socio-económicos pesqueros en la cuencadel río Meta, entre el río Metica y la población de Orocué, zonas de mayor intensidad pesquera. En esta área se presenta una producción pesquera controlada de las principales especies comerciales.

La Tabla 4, nos muestra la producción con que cada especie comercial contribuyó en los años 1975 - 1980 (seis años) a los principales centros de consumo, tales como Villavicencio y Bogotá.

TABLA 4. Producción media Pesquera controlada en la zona del Meta. Principales especies comerciales. 1975 - 1980

Especie	Producción Media (Kgs).	Distribución (%)
Bagre amarillo	269.916	23.9
Bagre pintado	264.816	23.4
Bagre Valentón	310.176	27.4
Cachamo.	151.525	13.5
Dorado	133.836	11.8
Total	1'130 -269	100 10

Fuente: Estadísticas Pesqueras-INDERENA

Remtiéndonos a la especie ictiológica objeto del desarrollo piscícola, la cachama blanca (Colossoma spp) solamente contribuye con el 13.5% como especie comercial y en su comportamiento global relativo dentro de la riqueza ictiológica de la zona ha sido entre 9.8% y el 15%.

La producción general para esta zona se cuantificó teniendo en cuenta las condiciones socio-económicas y pesqueras para el período 1979-1980.

La Producción que se estaba extrayendo del alto Meta alcanza aproximadamente en invierno a 137.1 toneladas y en verano a 560.2 toneladas, producciones que totalizan en el año pesquero 697.3 toneladas en el alto Meta.

Se estima, analizando el período 1979-1980 y para los Llanos Orientales que la producción del año pesquero alcanzaría a 1.084.7 toneladas correspondiendo la contribución de la cachama un 13.5 en el medio natural.

2. Oferta pesquera del proyecto piscícola

La oferta del proyecto piscícola propuesto, está supeditada al paquete técnico escogido. La producción bruta teniendo en cuenta las condiciones de microlocalización permitirá obtener 3.000 kilogramos/año. El producto alcanza, deduciendo la mortalidad y la eviscenración se calcula en 2.670 kg y 4.455 kg para estanques de 3.000 y 5.000 m2 respectivamente, dadas las condiciones de tecnología. La oferta del producto en la zona de Marandúa se condicionará a las perspectivas de la colonización, la cual podrá hacerse creciente según el número de los productos piscícolas. Estructurando inicialmente una oferta interna y de

the second of th

 $\mathcal{F}_{i} = \{ \mathbf{g}_{i}, \dots, \mathbf{f}_{i} \} \in \mathcal{F}_{i}$

The second section of the second section is a second section of the second section of the second section secti

And the second of the second o

.

acuerdo al número de productores, se tornaría en una oferta externa, permitiendo abarcar un mercado combinado. En cambio en la oferta permite preveer que en la parte de producción como estructura social individual y dadas las magnitudes de producción, deberá darse una agremiación de mercadeo y comercialización para entrar a la estructura de mercado combinado.

3. Proyección de la oferta piscícola

De acuerdo a lo expuesto en la diagnosis socio-económica, el proceso migratorio sobre el área macrolocalizada del proyecto piscícola se calcula que un 46.9% de los pescadores artesanales mantienen movimientos sobre los llanos.

Esto nos lleva a calcular que la tendencia de migración de las unidades familiares sobre la zona alcanzaría a 483 personas (69 familias). De acuerdo a esta inferencia se presenta la producción piscícola para la zona de Marandúa en la Tabla 5., para estanques de 3.000 m² y Tabla 6., para estanques de 5.000 m. A medida que se incremente la colonización, el proyecto permitirá aumentar tanto el consumo como los productores piscícolas, esto supone la necesidad de una producción planificada en este subsector económico, comportándose en iguales condiciones para estanques de 5.000 m².

En las Tablas 5 y 6 se asume una vinculación de las familias a la producción a medida que se vaya iniciando el reclutamiento previo a la plani - ficación integral para la zona.

TABLA 5. Proyección de la Oferta acuícola para colonización planificada con estanques de 3.000 m².

Unidad familiar partic.	Estanques microlocal. (m ²)	Producción Bruta (Kg.)	Producción Neta de Mercadeo (kg)	Familias vin- culadas a la produc. %
1	3.000	3.000	2.670	1.4
2	6.000	6.000	5.340	2.8
4	12.000	12.000	10.680	5.7
8	24.000	24.000	21.360	11.6
12	36.000	36.000	32.040	17.4
16	48.000	48.000	42.720	23.2
20	60.000	60.000	53.400	29.0
26	78.000	78.000	69.420	37.7
31	93.000	93.000	82.770	44.9
38	114.000	114.000	101.460	55.1

Fuente: Proyecciones del Grupo de Estudio.

TABLA 6. Proyección de la Oferta Acuícola para Colonización Planificada con Estanques de 5.000 m2.

Unidad familiar particip.	Estanques microlocaliz. (mt ²)	Producción Bruta (Kg).	Producción Neta de mer- cadeo (Kg)	Familias vinculadas a la prod.(%)
1	5.000	5.000	4.455	1.4
2	10.000	10.000	8.910	2.8
4	20.000	20.000	17.820	5.7
8	40.000	40.000	35.640	11.6
12	60.000	60.000	53.460	17.4
16	80.000	80.000	71.280	23.2
20	100.000	100.000	89.100	29.0
26	155.000	155.000	138.105	44.9
38	190.000	190.000	169.290	55.1

Fuente: Proyecciones del grupo de estudio.

Additional Control of the Control of

De las familias preestablecidas por sus características socio-económicas se presenta hasta una vinculación del 55.2% como productoras de carne de pescado, dejando el 44.9% a familias dedicadas a otras actividades.

Teniendo en cuenta los rendimientos económicos en la microlocalización de estanques de 5.000 m2, los productores podrían escoger este sistema de producción al cual inferiremos en el análisis de la demanda local.

B. Demanda y Consumo de Productos Pesqueros

Análisis de demanda en otros mercados

En este acápite es necesario salirnos del concepto tradicional con que se condiciona el tamaño de cualquier proyecto a la demanda, teniendo en cuenta que la producción pesquera depende de factores aleatorios y es condicionada por la tecnología utilizada en el piscicultura y a la capacidad de inversión.

Por otro lado debe considerarse el tipo de planeación con que se realice la colonización de Marandúa. Estos aspectos permiten presentar al proyecto piscícola, como el modelo de una UNIDAD ECONOMICA productiva, expuesta a la ley de Say, donde toda oferta crea su propia demanda. Sin embargo, presentamos algunas consideraciones de tipo económico dadas por investigaciones realizadas por el Ministerio de Agricultura y el INDERENA, los cuales nos permiten demostrar que el proyecto piscícola propuesto puede crear su propia demanda.

in the first of th

86 (48 X30 HATE) LONG SOLD FOR

normalise and the second of the second of the second

en en la grafia de la región de la companya de la servición de la companya de la companya de la companya de la La companya de companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya del companya de la companya de la companya de la companya de la companya del com

A control of the contro

Según el análisis del consumo hecho para los cinco principales centros urbanos del país (Bogotá, Medellín, Cali, Bucaramanga y Barranquilla), que concentran en su totalidad el 26% de la población nacional, a pesar de que el pescado es apetecido en un 83%, solo forma parte de la canasta familiar en los hogares de estratos altos con el 18.9% de la población, El. 64.1% restante, constituído por los hogares económicamente débiles , aunque les gusta elproducto por su alto precio solo lo consumen ocasionalmente en algunos casos. Al tener en cuenta los hábitos de consumo y las características de cada región, se observa que la mayor preferencia es por el pescado fresco , el cual se ofrece generalmente en condiciones anti-higiénicas y de baja calidad.

La Tabla 7., nos muestra la elasticidad ingreso de la demanda para dos delas ciudades, consideradas potencialmente como el mercado del proyecto piscícola.

TABLA 7. Elasticidad Ingreso de la demanda de productos pesqueros en Bogotá y Bucaramanga, por estrato socio-económico

Ciudad			Es	trato			Promedio por
	1	2	3	4	5	6	ciudad
Bogotá	0.40	0.34	0.47	0.56	0.70	0.75	0.54
B/manga	0.51	0.33	0.55	0.59	0.82	0.75	0.60
Prom./estra	at.0.45	0.34	0.51	0.58	0:76	0.75	0.57

Fuente: Extractado del Proyecto de Mercadeo pesquero Fase II. Minagricultura. 1976.

Para la ciudad de Bogotá, la elasticidad ingreso de la demanda de productos pesqueros, es menor que uno, existiendo variaciones relativas del grado de inelasticidad de la demanda para cada uno de los estratos con relación
a la relasticidad promedia de Bogotá, la cual es de 0.54.

Se puede observar que, mientras los estratos 1 a 4 tienen una demanda más inelástica al ingreso, que el promedio de la ciudad, los estratos 5 y 6 muestran un grado de inelasticidad menor que el promedio general. Estas variaciones de la demanda frente al ingreso está determinado tanto por las variaciones del ingreso como del consumo, en los diferentes estratos. El comportamiento de la elasticidad - ingreso de la demanda de productos pesqueros guarda uma estrecha relación con las razones manifestadas por los hogares de los diferentes estratos de la ciudad de Bogotá, quienes afirman consumir pescado en más de un 60% en razón al que to.

Para la ciudad de Bucaramanga, la elasticidad ingreso de la demanda (promedio) es de 0.60. Las variaciones del grado de elasticidad con respecto a la elasticidad media y entre los diferentes estratos es también similar a la ciudad de Bogotá. Dentro de los estratos 5 y 6 por su misma inelasticidad se pueden considerar estratos en donde se podría obtener un incremento mayor del consumo, ante un cambio en el ingreso.

2. Análisis de la Demanda como Mercado Local

Teniendo en cuenta la necesidad de alimentos que requerirán los habitantes - colonos de la ciudad de Marandúa, el proyecto pretende abastecer de proteína a esta población y al mismo tiempo una fuente de trabajo para las publishion para

unidades familiares, que deberá ser analizado integradamente con otras actividades de tipo agropecuario y/o agropesquero.

La demanda local se supedita al planeamiento general de colonización para esta región en las condiciones socio-económicas escogidas, presentando las condiciones de consumo (Tabla 8), para estas 483 personas las cuales podrían desarrollar la actividad combinada de la acuicultura y la pesquería en el río Tomo y el caño Terecay.

Tomando como base una tasa de crecimiento de población con inmigración planificada, el comportamiento de la demanda local se presenta en 9.2 Kg/año dados para un solo productor; este solo acuicultor podrá abastecer hasta 91 familias, con un consumo per-cápita de 7.0 Kg/año. Al aumentarse aceleradamente la colonización, la producción de 38 productores alcanzaría abastecer hasta 120 familia; con un consumo per-cápita similar, permitiendo crear excedentes para comercialización. Al consumirse el total de la producción el consumo per-cápita para las 120 familias sería de 200 Kg/año, demanda que superaría los parámetros internacionales de consumo.

No podemos desconocer la importancia de cuantificar la producción que aumentaría la extracción pesquera en el río Tomo y el Terecay, lo cual in - crementaría el consumo per-cápita.

Proyección demanda y consumo para la colonizacion planificada en Marandúa TABLA 8.

Familias Producción pesquera la pediación Extracción pesquera la pediación Población percaíta increm. Pobla									
4,455 o 483 o 483 o 69 4,455 o 483 0.05 508 8.7 o 72 4,455 o 508 0.05 560 7.9 o 80 4,455 o 560 0.05 588 7.5 o 84 4,455 o 588 0.08 635 7.0 * o 91 35.640 o 635 0.10 699 7.0 * 480.77 110 53.460 o 639 0.10 846 7.0 * 480.77 110 169.290 o 769 0.10 846 7.0 * 163.368 120	lias uladas produc.	Producción Proyecto (Kg)	Extracción pesquera Río Tomo y Terecay (Kg)	Población Básica Marandúa	Tasa de increm , Poblacion, moviliz,	Población Total Marandúa	Consumo Percaíta Marandúa	Excedente de comerc. Externa	No. fami- Familias alimentad.
4,455 o 483 0.05 508 8.7 o 76 4,455 o 508 0.05 533 8.3 o 76 4,455 o 533 0.05 560 7.9 o 80 4,455 o 560 0.05 588 7.5 o 84 4,455 o 588 0.08 635 7.0 * o 91 35.640 o 635 0.10 699 7.0 * 48.077 110 53.460 o 769 0.10 846 7.0 * 48.077 110 169.290 o 769 0.10 846 7.0 * 163.368 120	-	4.455	0 !	483	0	483	9.5	0	69 -
4.455 o 508 0.05 533 8.3 o 76 4.455 o 533 0.05 560 7.9 o 80 4.455 o 560 0.05 588 7.5 o 84 4.455 o 588 0.08 635 7.0 * o 91 35.640 o 635 0.10 699 7.0 * 48.077 100 53.460 o 769 0.10 769 7.0 * 48.077 110 169.290 o 769 0.10 846 7.0 * 163.368 120	-	4.455	0	483	0.05	508	8.7	0	72
4,455 o 533 0.05 560 7.9 o 80 4,455 o 560 0.05 588 7.5 o 84 4,455 o 588 0.08 635 7.0 * o 91 35.640 o 635 0.10 699 7.0 * 48.077 100 53.460 o 769 0.10 846 7.0 * 48.077 110 169.290 o 769 0.10 846 7.0 * 163.368 120	_	4.455	0	508	0.05	533	8.3	0	9/
4.455 o 560 0.05 588 7.5 o 84 4.455 o 588 0.08 635 7.0 * o 91 35.640 o 635 0.10 699 7.0 * 48.077 100 53.460 o 699 0.10 769 7.0 * 48.077 110 169.290 o 769 0.10 846 7.0 * 163.368 120	-	4.455		533	0.05	260	7.9	0	80
4.455 o 588 0.08 635 7.0 * o 35.640 o 635 0.10 699 7.0 * 48.077 53.460 o 699 0.10 769 7.0 * 48.077 169.290 o 769 0.10 846 7.0 * 163.368	_	4.455	0	560	0.05	588	7.5	0	
35.640 o 635 0.10 699 7.0 * 30.747 53.460 o 699 0.10 769 7.0 * 48.077 169.290 o 769 0.10 846 7.0 * 163.368		4.455	0	588	0.08	635		0	91
53.460 o 699 0.10 769 7.0 * 48.077 169.290 o 769 0.10 846 7.0 * 163.368	œ	35.640	0	635	0.10	669	7.0 *	30.747	100
169.290 0 769 0.10 846 7.0 * 163.368	12	53.460		669	0.10	69/	¥ 0.7	48.077	110
	38	169.290	0	692	0.10	948	7.0 *	163.368	120

هد asume que el consumo per-cápita anual será de 7.0 Kg/año, este consumo de prevee que aumentará con la producción pesquera proporcionada por el Río Tomo y el Caño Terecay. El consumo per-cápita nacional pesquero es de 4.3 Kg /año.

Fuente: Estimaciones del Grupo de estudio.

IV. INGENIERIA DEL PROYECTO

A. Alternativas del Estudio

1. Tamaño de los Estanques

Teniendo en cuenta que el objetivo principal del proyecto es el de diseñar una unidad de explotación de tipo familiar, se consideraron dos tamaños de estanque: $3.000 \text{ y } 5.000 \text{ m}^2$. Los criterios que se siguieron para determinar estas dos áreas entre otros fueron:

- a. Los resultados que se obtuvieron al aplicar un paquete técnico económico recomendado por el INDERENA para la producción de <u>Tilapia rendalli</u> en estanques de $1.250~\text{m}^2$. Con ese ensayo se concluyó que no era económicamente viable producir Tilapia en áreas menores a $1.250~\text{m}^2$.
- b. La necesidad de producir alimentos en cantidades significativas para atender la demanda de los colonizadores potenciales.
 - c. El bajo costo de la tierra en la región

2. Equipos Requeridos

Para el manejo del agua (bomba para llenado, mantenimiento del nivel, etc.) se hizo necesario considerar alternativas de selección de equipos, para tal caso se tuvieron en cuenta:

- a. Motobombas movidas por gasolina
- b. Bomba de succión accionada por molino de viento

c. Bomba de succión movida por energía solar

Cada uno de los anteriores sistemas tiene sus propias características (ventajas - desventajas) como fuentes diferentes de energía, las cuales son determinantes en la estructura de costos.

a. Motobomba a gasolina

Es el sistema tradicionalmente empleado para el manejo del agua.

Sin embargo, su limitante principal es el suministro de combustible, por el alto costo en la región.

La motobomba considerada tiene las siguientes características;

Bomba 8 M

Altura máxima de succión 7.00 m.

Motor a gasolina

3 HP

r. p. m.

3.200 - 3.500

Diámetro de succión y descarga 2 pulgadas

b. Molino de viento

La energía cólica obtenida a través de los molinos de viento tipo gaviotas (MVZE) fue considerada de acuerdo con las características técnicas siguientes:

Bomba de doble efecto que reparte el bombeo en partes iguales de ascenso y descenso, reduciendo así a la mitad la fuerza exigida al viento.

Bombeo con viento muy débil de 2 mts/ seg.: 2 mts3 / día

Bombeo con viento medio de 6 mts /seg.: 6-8 mts³ / día
Alcance típico del bombeo en zona plana: 500 mts. (tubo 3/4")
Profundidad máxima de bombeo con 10 extensiones: 25 mts.
Altura máxima de bombeo sin extensión: 4.2 mts. 5 ó 6 de la altura del brocal.

b. <u>Energía solar</u>

Módulos 16 - 2.000

12

Bomba sumergible de 8 amperios.

El sistema está diseñado para iniciar el bombeo con las primeras lucesdel día, incrementando lentamente su caudal a medida que aumenta la radiación solar y disminuyendo en las horas de la tarde.

Es un sistema de mínimo mantenimiento, lo cual disminuye al máximo los costos de operación.

B. Alternativas Consideradas

Para el análisis técnico y económico, se consideraron 6 alternativas:

Tabla No. 9: Alternativas Consideradas

Tamaño del Estanque	Equipo de bombeo (Modo de acción)
3.000 m ²	Motobomba a gasolina Molinos de viento
5.000 m ²	Energía solar
5.000 III-	Motobomba a gasolina Molinos de viento
	Energía solar

Fuente: Grupo de estudio

De las alternativas estudiadas se excluye la utilización de los molinos de viento y la energía solar desde el punto de vista técnico y económico por: altos costos de inversión y lentitud en el proceso de llenado y
mantenimiento en el suministro de aguas.

C. Obras de Ingeniería

1. Consideraciones generales en la construcción de estanques

Como en el proyecto no se determinó una microlocalización para la construcción de los estanques, se dan a continuación recomendaciones generales para su localización, diseño y construcción.

a. Fuentes de agua

1) Requerimientos básicos

Libre de contaminantes, suficiente cantidad y buena calidad.

El volumen de agua requerida puede provenir de una de las siguientes fuentes:

a) Aguas lluvias

Es el caso de estanques de represamiento constituídos en la parte baja de terrenos levemente ondulados.

b) Arroyos o quebradas

Obteniendo el agua por desviación hacia el estanque, el que será excavado en el caso de terrenos planos, o de represamiento en caso de ser ondulados, o una combinación de los anteriores, cuando la topografía del terreno lo permita.

c) Pozos artesianos

Usualmente es considerado como la fuente más pura de agua. Normalmente su contenido de sales es muy bajo, lo que obliga a encalar el estanque antes de ser utilizado en la piscicultura con fertilizantes.

d) Manantiales.

Es considerado como una fuente barata de agua permanente, lo cual permite a muy bajo costo un cultivo intensivo de peces, con recambio contínuo de agua para la eliminación de los desechos metabólicos y una mejor oxigenación del estanque.

b. Suelos y Topografía

El contenido mínimo de arcilla en el suelo debe ser del 20%. En su orden los siguientes tipos de suelos han demostrado ser los mejores para la construcción de diques:

- CH Arcillas inorgánicas de alta plasticidad, arcillas francas.
- OH Arcillas orgánicas de media a alta plasticidad
- SC Arenas arcillosas, mezclas de arena y arcilla.

c. Características y especificaciones de diseño recomendadas

1) Tamaño y forma

El tamaño puede variar de acuerdo a las condiciones técnico-económicas del paquete tecnológico recomendado. Lo importante es la determinación de una estructura de costos que aseguren una rentabilidad adecuada de la explotación. Si la cosecha parcial o recolección regular de los peces se va a efectuar con una red en forma rutinaria, los estanques excavados deben ser en forma rectangular con un ancho que no exceda el largo práctico de una red que se pueda halar con la mano de obra disponible. Caso con trario es conveniente que el piscicultor elabore su propia red pesquera.

2) Requisitos de la profundidad del agua

La profundidad máxima en la represa puede estar entre 1.20 y 1.50 mts. En caso de evaporación excesiva o pérdidas de agua, la profundidadmáxima del estanque se debe extender a 2.5 mts.

3) Altura

Para la mayoría de los casos, la parte de arriba de la represa debe estar entre 0,20 mts. por encima del nivel de agua del estanque.

4) Suministro de agua y desague

El estanque deberá contar con un sistema de entrada y salida de aguacon sus correspondientes canales, tuberías y filtros que aseguren una labor con eficiencia y a un menor costo posible.

5) Construcción

A continuación se resumen los principales pasos que en su orden deben seguirse para la adecuada construcción de un estanque.

- i. Selección del sitio
 - Topografía
 - Fuente de agua
 - Cuenca hidrográfica
 - Suelo
- ii. Levantamiento topográfico de la base del estanque.
- iii. Limpiar base del dique
 - iv. Estacar base del dique
 - v. Excavar
- vi. Rellenar base del dique
- vii. Instalar tubería de drenaje
- viii. Rellenar el terraplén y compactar por capas
 - ix. Instalar el rebosadero
 - x. Impermeabilizar (arcilla o plásticos)
 - xi. Contención de taludes
- 2. Diseño de Obras para el Proyecto
 - a. Construcción del estanque y Dique perimetral ($5.000~\text{m}^2$)

Las obras civiles que se adelantarán consisten en la construcción de un estanque de 100 metros de largo por 50 metros de ancho, con taludes 2:1 y un dique perimetral sobre el terreno natural con una altura de 1 metro.

La excavación se hará con un cargador - retroexcavador el que a su vez conformará y compactará el dique perimetral con el material de excava -

ción en capas de 0.30 metros, hasta alcanzar la altura deseada.

b. tubería de drenaje

Con el fín de desaguar parte del estanqe en época de cosecha, o de ser neceario en otras situaciones se construirá un sistema de drenaje, consistente en un tubo de PVC de 6" que atraviese el dique o terraplén al nivel de su base. Este irá unido a una sección de tubo dfe igual diámetro y material mediante un codo en la parte externa del cuerpo de agua. El extremo del tubo que queda en la parte interna del cuerpo deagua, llevaría un cono de malla metálico.

Este sencillo sistema permitirá un desague regulado en cualquier momento, requeriendo para ello girar al máximo la sección vertical hacia uno de los lados hasta obtener el vacío del volumen del estanque en un 60%.

c. Plastificada del estanque

Para evitar las pérdidas por filtración se revestirá el fondo y los taludes con plástico calibre 6 de color negro. Una vez colocado el 'plástico se cubre con una capa de tierra la cual para evitar que sea lavada por acción del agua se debe proteger con madera rolliza de 10 cms de diámetro. Esta quedaría separada cada 2 metros. El entramado de madera se recubrirá con una capa de tierra de 15 cms.

en de la composition La composition de la La composition de la

And the second of
d. Fuentes de suministro de agua

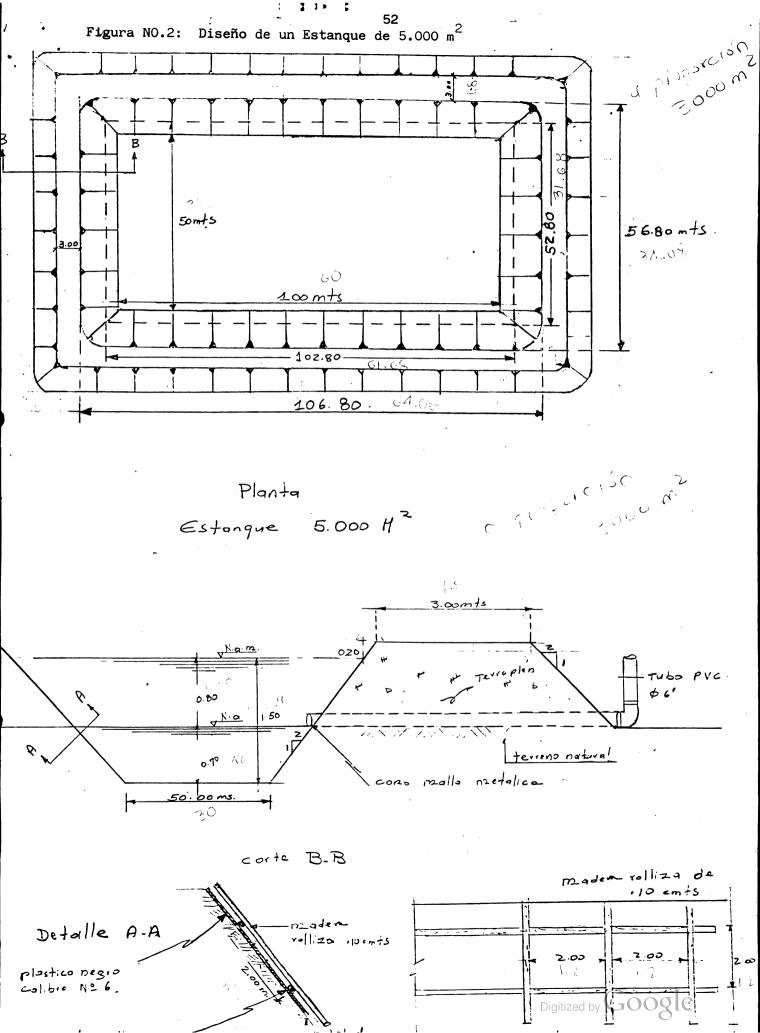
Para cubrir las necesidades de agua durante los meses en que se presenten déficit de lluvias, será necesario contar con fuentes de agua y en este caso se utilizarán las provenientes de cursos aledaños al sitio escogido para la construcción del estanque. El suministro de hará con motobomba autocesante de 3 HP de 2 pulgadas de succión por 2 de descarga con motor a gasolina de 3.200 R.P.M.

e. Suministro de agua

Para efectos de la operación del embalse se efectuó un balance hídrico, mediante el cual se supone que éste entraría en operación en el mes de septiembre. Las lluvias caídas a partiraa del mes de abril habrán aportado al estanque aproximadamente 6.080 mts ³, por lo cual será necesario bombear 2.100 mts ³ para copar la capacidad calculada del embalse de 8.200 mts ³, (Ver anexo 2.).

f. Inversión en obras

Para el cálculo de los costos de éstos se han tomado las condiciones más "extemas" en cuanto a suelos y topografía, toda vez que se han estimado suelos con contenido de arcilla menores del 20% y áreas de topografía plana, lo que implica adenmás de una impermeabilización del estanque, un mayor movimiento de tierra. En la figura 2 se aprecia el diseño del estanque de 5.000 m 2 .



 \mathcal{L}_{ij} , which is the state of \mathcal{L}_{ij} , which is the state of \mathcal{L}_{ij} , which is the state of \mathcal{L}_{ij} and the second of the second o and the second of the second o

The state of the s · 11 · 1 $(1, 1) \cdot (2\pi) = (1, 1) \cdot (2\pi) \cdot (2\pi)$

.

in the second of and the second of the second o and the state of the and the second of the second o And the second second

V. TECNOLOGIA DE MANEJO DE LA ESPECIE

El propósito principal del proyecto de piscicultura en Marandúa, como ya se mencionó, será el estudio de la cachama en estanques (de los colonos). A continuación se mencionan algunos datos biotécnicos que es necesario tener en cuenta para desarrollar su cultivo.

A. Aspectos Generales de la Cachama

Elgénero <u>Colossoma</u>, como muchos otros géneros de la familia characidae, es originario de las cuencas de los ríos Amazonas, Orinoco, Meta y sus tri-butarios. Parece que en los ríos localizados en el área de Marandúa se encuentra esta especie de acuerdo con informaciones obtenidas de algunos co-lonos de la región.

La especie <u>Colossoma</u> macroporum se conoce como "tambaquí" en el Brasil "cachama" en Colombia, "cachamo" y "morocoto" en Venezuela y "gamitana" en Perú. El Colossoma bidens posee el nombre común de "pirapitinga" en Brasil, "cachama blanca" en Colombia y "pacu" en varios países de Sur América.

Poco se sabe sobre la biología de estas dos especies en su habitat natural. Ambas desovan una vez al año en respuesta al aumento de los niveles de agua durante la estación lluviosa y a la migración a las áreas de desove en los ríos principales. Las hembras liberan sus huevos en las corrientes, los cuales son fertilizados por los machos que se encuentran en

los alrededores. El huevo semiflotante es mantenido a flote por las corrientes hasta su eclosión.

1. Alimentación

Honda (1974) estudió los hábitos alimenticios de <u>Colossoma</u> - <u>macroponum</u> capturados cerca de Manaus, Brasil. Los alimentos más frecuentes incluyeron frutos y semillas terrestres, Zoo plancton o insectos acuáticos.

No se encontró un solo pez en el estómago de <u>C. macropomum</u>. Esta especie se alimenta casi exclusivamente de frutos y semillas, durante los períodos de desbordamiento, cuando la especie invade las zonas inundadas. Durante los períodos de bajo caudal de agua en los ríos, el acceso a las áreas terrestres es limitado. Bajo estas condiciones <u>C. macropomum</u> parece ser principalmente un filtrador de zooplacton.

De <u>Colossoma bidens</u> también se conoce que se alimenta de semillas y frutos. Se ignoran sus hábitos alimenticios cuando no hay disponibilidad de frutos y semillas. Esta especie no puede alimentarse de organismos planctónicos.

Experimentos realizados en monocultivo han demostrado buenos resultados utilizando maíz y raciones para pollo (concentrados).

2. Longitud

El rango de longitud estandar para la cachamo blanca es de 44 cm.

(2.9 Kg) a 66 cm (8.1 Kg) y un promedio de 54 cms, según observaciones efectuadas sobre el río meta. La distribución de longitud durante los perío-

dos de alto y bajo nivel de agua presenta una diferencia significativa, siendo de pequeña talla durante los períodos de bajo nivel.

En el alto Meta, la mayoría de las cachamas son capturadas en abril y mayo, cuando el nivel del agua empieza a aumentar. Los peces se encuentran maduros en esta época y grandes capturas pueden ser hechas con mallas rodadas aprovechando que el pez migra río arriba. La migración también trae los peces al alto Meta donde salen a las Sabanas inundadas y el alimento es abundante (frutos, hojas, semillas de moriche, etc.)

El rango de longitud para la cachama negra o cherna va de 48 cms. (6.0 Kg) a 80 cms. (13.0 Kg) y el promedio es de 63 cms. (9.3 Kg) en la capturacomercial.

La cherna o cachama negra es menos abundante que la cachama blanca.

3. Calidad del agua

Lovshin (1980), observó altas resistencias a bajos niveles de oxígeno en colossoma spp, llegando inclusive a reportar descenços de hasta 0.8 ppm sin que esto cause mortalidad en la población sí el agua puede ser renovada rápidamente para mejorar su calidad. Silva et al (1978) reportaron problemas de mortalidad de la especie cuando los niveles de oxígeno permanecieron en menos de 1 mg / litro por un tiempo prolongado.

4. Captura

Ambas especies son extremadamente fáciles de capturar con una red. Un alto porcentaje, 95% puede ser removido con un solo pase utilizando un chinchorro o una malla.

Ninguna de las especies salta o se acuesta en el fondo para escapar de la red, sino más bien permanecen en un cardumen compacto, en la mitad de la columna de aqua.

5. Importancia de las especies

Ninguna otra especie nativa de Sur américa ha demostrado un potencial para el cultivo como Colossoma macropomum y Colossoma bidens hasta la fecha. Los excelentes resultados obtenidos con estos peces demuestran no solo grandes promesas para la piscicultura tropical en Sur américa, sino para la piscicultura tropical en el mundo. Todavía quedan muchas preguntas por resolver concernientes a la reproducción de estos peces. Los biólogos piscicultores de la región deben continuar estudiando las especies de Colossoma, de tal manera que se puedan ofrecer a los piscicultores interesados en su producción, sistemas probados de cultivos que ayuden a hacer una realidad su crianza en Suramérica.

6. Reproducción

- a. Desovan una vez al año en aguas naturales, cuando el nivel de las aguas es alto y migran a los tributarios de las cabeceras, generalmente entre abril y mayo en el río Meta por ejemplo.
- b. No desovan en cautiverio, aunque si maduran sexualmente entre el primero y cuarto año de vida.

Los peces sexualmente maduros responden al "desove" inducido utilizando técnicas de hipofización, con lo cual esta especie está demostrando ser
una gran promesa en la piscicultura tropical.

- c. Una hembra de 10 15 Kgs.puede producir de 2 4 litros de huevos. En un litro de huevos secos hay entre 100.000 y 200.000 huevos.
- d. El período de incubación varía de 20 a 24 horas, entre 26 y 28°C de temperatura.
- e. El desarrollo larval requiere entre 4 y 5 días a esa misma temperatura, es decir, una vez terminan de reabsorber el saco vitelino.

Longitud total promedio = 6.5 m.m.

Al octavo día de eclosionados miden entre 11 y 12 m.m., su ali - mentación ha sido principalmente microplancton.

Los individuos están completamente formados al decimoquinto día.

Longitud total promedio = 18 - 20 m.m. Ya acepta alimento suplementario y está apto para sembrarse en estanques, debidamente preparados.

B. Preparación del Estanque

Antes de proceder al llenado del estanque y la siembra de los alevinos es necesario efectuar una práctica de abonamiento, la cual ofrece la posibilidad de aumentar considerablemente la productividad del estanque, en términos del incremento del fitoplancton, el que a su vez servirá para la gran mayoría de las especies aptas para cultivo.

1. Clases de Correctivos y Abonos

De acuerdo al análisis de suelos y aguas realizados, se debe aplicar cal yabonos orgánicos (estiercol de ganado, cerdos y aves) o fertilizantes químicos, preferencialmente con un mayor contenido de fósforo.

Periódicamente deberá hacerse análisis sobre la riqueza del agua a fin de efectuar abonamientos periódicos durante el tiempo de operación del estanque.

a. Dósis generales

Estiercol de ganado o caballo: 675 Kg /ha / semana

Estiercol de cerdos: 600 Kg /ha / semana

Estiercol de aves de corral: 170 Kg /ha / semana

Fertilizante 10-30-10 22.5 Kg /ha / semana

Superfosfato simple: 34 Kg /ha / semana

Para el estanque objeto del proyecto, por carecerse en la región de materia orgánica de cualquier clase, se utilizará Calfos y fertilizante de relación 10-30-10

C. Siembra.

Se debe asegurar una fuente garantizada para el suministro de peces sanos y evitar cualquier traumatismo físico a los alevinos dunante el trans porte y la siembra en los estanques. Transportar los peces en bolsas plásticas (250 alevinos de 10 grs. / bolsa. Se siembra un ejemplar por m² o sea 5.000 alevinos para el estanque proyectado.

D. Características Deseable del Agua

Las aguas a utilizar deberán tener las siguientes características:

1. Suficiente oxígeno disuelto para la especie

- 2. Temperatura adecuada para los requisitos biológicos de las especies
- 3. Bajo contenido de solidos en suspensión (turbidez)
- 4. Alcalinidad total sobre 20 ppm como CaCO₃
- 5. pH entre 6.5 y 8.5
- 6. Salinidad dentro de los límites de tolerancia de la especie objeto del cultivo.
- Libre de contaminadores tales como químicos industriales y de agricultura.

De acuerdo con los análisis practicados en las aguas de los ríos Tomo, el Caño Terecay y en los pozos de observación de nivel freático perforados por el IGAG, se determinó las siguientes características bióticas en el área.

pH : 5.0 - 5.5

Dureza total: menos de 8 ppm.

Alcalinidad: menos de 8 ppm

Temperatura del agua: 28°C a las 9 a.m.

29 °C a las 2 p.m.

Temperatura ambiente: 32°C

Oxígeno disuelto en el agua: 8 ppm.

Si bien la calidad del agua no se encuentra dentro de los rangos más óptimos para su uso, se puede trabajar con ellas para las necesidades de la especie, previo encalamiento.

E. Alimentación

1. Tipo de alimento y régimen

Alimento concentrado para pollos (20.5% proteína cruda) suministrado 5días a la semana, 1 ración diaria (entre 7:30 - 10:30 a.m.)

Tiempo de duración en producción : 365 días

Conversión alimenticia esperada: 1.5: 1

Peso inicial promedio: 10 grs.

Peso final promedio: 1.000 grs.

Evisceración: 10%

Mortalidad esperada 1%

En las Tablas 10 y 11 se encuentran las cantidades requeridas de alimento y fertilizante para el proyecto.

F. Problemas en el Manejo del Cultivo

Referente al manejo del cultivo, se presenta como una limitante en su producción la disponibilidad suficiente y oportuna de alevinos para la siembra. Si se tiene en cuenta que una granja piscícola a cualquier escala comercial estará sujeta al azar que significan variaciones medio ambientales que retardan la madurez de los Padrotes en los centros de semilla, es viable entonces que se procure su abastecimiento lo más pronto posible.

En la actualidad el INDERENA está produciendo semillas en la estación piscícola localizadas en Repelón (Atlántico) y Villavicencio.

La estación de Repelón produjo recientemente 350.000 Alevinos

Costos de operación tecnológica para el Estanque de $3.000~\mathrm{mts}^2$ (Alimento y Fertilizante). TABLA 10:

1						
Mes	Alimento/mes acumulado 3.000 (Kg)	Costo /mes Acumulado Ŝ	Abono acumulado Ka.	Costo abono acumulado	Costo To- tal Tecnolo- qía	Costo Unitario Técnico
-	416.25	17.482.50	2.7	931.50	18.414.00	6.14
7	787.50	33.075.00	54	1.863.00	34.938.00	11.64
٣	1.158.75	48.667.50	81	2.794.50	51.462.00	17.15
4	1.530.00	64.260.00	108	3.726.00	67.986.00	22.66
72	1.901.25	79.852.50	135	4.657.00	84.510.00	28.17
9	2.272.50	95.445.00	162	5.589.00	101.034.00	33.68
7	2.643.75	111.037.50	189	6.520.50	117.558.00	39.19
∞	3.015.00	126.630.00	216	7.452.00	134.082.00	69.44
σ	3.386.25	142.222.50	243	8.383.50	150.606.00	50.20
10	3.757.50	157,815.00	270	9.315.00	167.130.00	55.71
Ξ	4.128.75	173.407.50	297	10,246.50	183.654.00	61.22
12	4.500.00	189.000.00	324	11.178.00	200.178.00	66.73

Fuente: Grupo de trabajo

TABLA 11: Costos de operación tecnológica para el Estanque de $5.000~{
m mts}^2$ (Alimento y Fertilizante)

_				62								1
Costo Total técnico acumulado	30.690	58.230	85.770	113.310	140.850	168.390	195.930	223.470	251.010	278.550	306.090	333.630
Costo abono acumulado (\$34.5 Kg)	1.552.50	3.105.00	4.657.50	6.210.00	7.762.50	9.315.00	10.867.50	12.420.00	13.972.50	15.525.00	17.077.50	18.630.00
Abono acur mulado (Kg)	45	06	135	180	225	270	315	360	405	450	495	240
Costo/mes acumulado (\$42.00)	29.137.60	55.125.00	81.112.50	107.100.00	133.087.50	159.075.00	185.062.50	211.050.00	237.037.50	263.025.00	289.012.50	315.000.00
Alimento/mes acumulado 5.000 (Kg)	693.75	1.312.50	1.931.25	2.550.00	3.168.75	3.787.50	4.406.25	5.025.00	5.643.75	6.262.50	6.881.25	7.500.00
Mes	-	7	m	4	2	9	7	∞	0	10	11	12

Fuente: Grupo de trabajo

G. Alternativas Tecnológicas de la Especie

Las recomendaciones técnicas para el cultivo de de cachama dadas en el proyecto, han sido recopiladas de las experiencias y recomendaciones con que cuenta el INDERENA para esta especie.

Durante el simposio "Sistemas de Acuicultura para Colombia", evento organizado por la Facultad de Medicina Veterinaria y Zootecnia de la Universidad de Caldas en Manizales, del 24 - 26 de agosto de 1983, se discutieron también los sistemas de cultivo que podrían recomendarse para las condiciones naturales de Colombia y que fueron acogidas en el proyecto.

Sin embargo, al hacer la revisión de literatura y analizar algunos de los ensayos de investigación que se han realizado con esta especie, los cuales se resumen en la Tabla12, surge la inquietud de que en Colombia se continuen adelantando experimentaciones para definir un paquete técnico-económico más racional y que le signifique al piscicultor una mayor rentabilidad, dada la diversidad en los resultados observados.

Algunos resultados de investigación para la producción de Cachama. TABLA 12:

Autor Condición Técnica	Bermúdez et al 1975	Silva et al 1975	Loyshin, 11 et al 1977	INDEREMA
1. Densidad de siembra	Un ejemplar $/m^2$	1/ m ²	1/3.8 m ²	1/m ²
2. Suministro de ali- mento	Pollarina 15% proteína + 20 Kgs/ha/semana de estiercol de ganado + 2 Kg/ha/semana de fer∙ tilizante inorgánico.	Concentrado (35% de proteína) suministra- da al 3% del peso corporal 6 días a la semana	Boñiga 448 Kg/ha/ 1.5 meses durante los primeros 6 me- ses +alimento conc. (29% proteína) al 3% del peso corpo- ral diario.	Conc de p 3% d ral, sema diar
 Duración del ensa- yo (días) 	120	365	405	365
4. Peso inicial (grs.)	230	ı	6	10
5. Peso final (grs.)	1028	1051	992	1000
6. Produc.neta (kg/ha/ año)	2500	4605	2228	4112 Kg/ha/6 meses 8224 Kg/ha/año (2 2000ha)
. Conversión alimen- ticia	1.7:1	ı	3,38:1	1,5:1

Fuente: Sistemas de acuicultura para Colombia. Simposio ICFES. Serie de memorias No. 9. Bogotá, 1983

VI: INVERSIONES, COSTOS Y EVALUACION DEL PROYECTO

A. Alternativas de Inversión Analizadas

Teniendo en cuenta el tamaño del estanque y el sistema de bombeo a utilizar para el manejo, a continuación se definen alternativas de acuerdo a
los costos.

En la Tabla 13, se han resumido los costos de inversión y operación de tales alternativas, los cuales se encuentran detallados en los Anexos del -No. 4 al 15.

Como no se da una microlocalización para el proyecto y las características de topografía, textura y permeabilidad del suello, fuentes de agua, etc., son variables de un lugar a otro, para el cálculo de los costos de inversión se tuvieron en cuenta las condiciones más difíciles, lo cual, los incrementa notoriamente. En la medida en que se disponga de estudios detallados de suelos y se localice un sitio ideal con baja permeabilidad será posible, por ejemplo, obviar las prácticas de plastificación y construcción de empalizadas para contención de taludes, lo cual redundará favorablemente en la estructura de costos.

Al hacer el cálculo del VPN de las inversiones realizadas como se aprecia en la Tabla 14, podemos deducir que el VPN a las tasas de descuento analizadas resultan favorables las alternativas. Motobomba a gasolina en los tamaños de 3.000 y 5.000 m², sobre los cuales se hizo el cálculo de la TASA

TABLA 13: Costos de las alternativas estudiadas

Costos de las Alternativas	Inversión (\$)	Operación (\$)	Total (\$)
Estanque 3.000 m ² Motobomba	914.570	392.453	1'307.023
Molinos de viento	1'676.320	367.453	2'043.773
Energía solar	1'266.670	367.453	2'634.123
Estanque 5.000 m ² Motobomba	1 ' 747 . 470	641.400	2'388.870
Molinos de viento Energía Solar	2'965.870 4 ' 020.170	601.755 601 . 755	3'567.625 4'621.921

Fuente: Grupo de estudio

TABLA 14: Valor presente neto de los costos de inversión de las alternativas estudiadas.

Alternativa	Tasa de Descuento				
	5%	11%			
3.000 m ²					
Motobomba a gasolina	- 1'197.198	- 1'136.572			
Molinos de viento	- 2'107.999	- 1'998.729			
Energía solar	- 2'127.998	- 2'277.329			
5.000 m ²					
Motobomba a gasolina	- 1'940.237	- 1'929.963			
Molinos de viento	- 3'479.201	- 3'368.920			
Energía solar	- 3'557.754	- 3'884.000			

INTERNA DE RETORNO. El resultado fue el siguiente:

Estanque	TIR
3.000 m ²	1.8
5.000 m ²	2.8

Finalmente la decisión de selección se tomó para el estanque de $5.000~\text{m}^2$ con motobomba para el cual se presentan los análisis respectivos.

Como también se observa que el VPN es favorable a la alternativa es tanque de 5.000 m² con sistema de motobomba, con relación a la alternativa estanque de 3.000 m² con sistema de molinos de viento, se escogieron para efectos del estudio final las alternativas que conllevan al empleo de motobomba a gasolina.

Se tomó la decisión por estas alternativas debido a que son los que requieren una menor inversión inicial, en razón a la nula capacidad económica de los potenciales beneficiarios del programa de colonización. En cuanto a las alternativas que incluyen el empleo de la energía solar, no se desconocen las ventajas adicionales, que podrían tener por su empleo en otras actividades diferentes a las contempladas en el proyecto. Estos beneficios no se evaluaron.

B. Flujo Fondos de Inversión

1. Costos de Inversión

Para el proyecto son los representados por la construcción del estanque y aquellas obras e implementos necesarios para su funcionamiento.

De acuerdo con la Tabla 15, se observa que el total, el 62.6% lo absorbe la construcción y plastificación del estanque. Esto lleva a suponer
que si se dan unas condiciones más favorables en cuanto a suelos con mayor
contenido de arcillas y mayores pendientes, este rubro se reducirá aproximadamente en un 30%, que estaría representado por un menor movimiento de
excavación, no utilización de plástico y mano de obra.

Otro factor que está incidiendo en el proyecto es el capital de trabajo que representa cerca del 27% del total de las inversiones.

Dadas las características de los equipos e implementos utilizados, se observa que a través del horizonte del proyecto se deben hacer inversiones periódicas. (Ver anexo 16)

2. Costos de operación (Ver tabla 15)

- Costos fijos

Los únicos costos fijos están representados por las depreciaciones de los rubros que conforman el FFI y su incidencia en el total de costos es del 15%.

- Costos variables

Se han dividido en mano de obra e insumos y representan el 85% del valor de los costos totales; a su vez los insumos implican el 72% de ese total, participando los concentrados con un 42%. Esto está demostrando que los esfuerzos técnicos y de investigación deben ir dirigidos a buscar fuentes complementarias y suplementarias en alimentación para cachama.

TABLA No 15, Incidencia porcentual de los costos de inversión y operación en estanque de $5.000~\text{m}^2$ con motobomba.

Concepto	\$	%
. Costos de Inversión		
- Estanque y plástico	1'494.300	62.6
- Capital de trabajo	641.400	26.8
- Otros	253.170	10.6
Total costos inversión	2'388.870	100.0
Costos de operación		
- Costos fijos	112.316	15.0
- Costos variables	641.400	85.0
• •Insumos	544.800	72.2
º ₄Mano de obra	96.600	12.8
Total costos operación	753.716	100.0

3. Punto de equilibrio

Para el estanque de 5.000 m² ese punto está dado en 2.005 peces donde el acuicultor ni pierde ni gana en su producción.

4. Flujo de Caja y capital de trabajo

Nos demuestra que hay para el primer año una pérdida de \$641.400, la cual se acumula para el segundo año en \$249.600 con unas ventas de \$891.000 en el tercer año las pérdidas se disminuyen a \$142.200 para que a partir del cuarto año se obtengan flujos positivos a lo largo de la vida útil del proyecto.

El capital de trabajo como inversión dentro del proyecto se considera en \$641.400 recuperable a los 15 años como se observa en el anexo No. 16.

C. Plan de Ingresos y Egresos con el F.F.N.I.

Como se aprecia en el anexo 16, el resultado de los ingresos y egresos a lo largo del proyecto muestra estabilidad a partir del segundo año.

VII: CONCLUSIONES Y RECOMENDACIONES

A. CONCLUSIONES

- El Proyecto se planteó en condiciones extremas de localización por falta de estudio detallado de suelos y topografía, lo que llevó a formular altos costos de inversión
 - El denominado paquete tecnológico de la especie considerada para el Proyecto tiene variaciones significativas.
- 2. Los costos de alimentación con base en la utilización de alimento con centrado para pollos y que tienen alta incidencia en la estructura ge neral de costos de operación, tenderán a disminuír con la utilización de algunos productos agrícolas que se produzcan en la zona.
- 3. La alternativa de estanque de 5.000 m² con motobomba resulta ser la más ventajosa en las condiciones supuestas sin llegar a ser atractiva su inversión.
- 4. Las alternativas de estanque con energía solar y molinos de viento, a pesar de no haberse hecho @valuación, no resultaron las más convenientes para el proyecto.

B. RECOMENDACIONES

- Conviene la vinculación del INDERENA en la región para realizar estudios e investigación respecto a, densidades de siembra, hábitos ali menticios, inducción a la reproducción de alevinos etc., que confor men un paquete técnico económico eficiente.
- Comprometer a las entidades del sector agropecuario para el desarrollo del proyecto.
- 3. Adelantar otros estudios que complementen el proyecto y que conlleven al desarrollo de la actividad piscícola de la región.
- 4. Asignar la coordinación del proyecto a DAINCO, para una adecuada im plementación y ejecución por ser la entidad promotora del desarrollo de la región.

BIBLIOGRAFIA

- CURSO DE ENTRENAMIENTO EN ACUICULTURA. Memorias. Gigante, Huila, 1979
 100 p.
 Jensen, G.L.
- 2. INSTITUTO COLOMBIANO PARA EL FOMENTO DE LA EDUCACION SUPERIOR. Encuentro nacional de investigadores sobre la Orinoquía. Bogotá. Serie Memorias de eventos científicos. 12: 420 p. 1893.
- 3. INSTITUTO GEOGRAFICO AGUSTIN CODAZZI. Informe parcial II Expedición

 Botánica. Estudios de suelos Arauca, Cravo Norte y Marandúa. Bogotá 245 p. 1984.
- 4. LOVSHIN, L.L. Situación del cultivo de <u>Colossama</u> sp. en Sud-América.

 Revista Latinoamericana de Acuicultura (Lima) 5: 1-36. 1980.
- 5. MERINO, M. C. Cultivo intensivo y reproducción inducida de la Cachama (<u>Colossama bidens</u> Spix), en los Llanos Orientales de Colombia.
 Villavicencio, Programa DRI- INDERENA. 1983. 32 p.
- 6. MINISTERIO DE AGRICULTURA. Estudio de mercado pesquero. Bogotá Fase
- 7. MINISTERIO DE OBRAS PUBLICAS Y TRANSPORTE. Carretera Puerto Gaitán, Puerto Carreño, zona de influencia. Bogotá. Informe Técnico 46 p. 1984.

- 8. MOREY, R. V. Los Guahibos: Colonos antígulos en una frontera nueva en tierra, tradición y poder en Colombia. Bogotá. Colcultura. Biblioteca Básica Colombiana 12: 45-61. 1976.
- 9. POLO ROMERO, G. Bases socioeconómicas para una planificación del desarrollo en las pesquerías del río Meta. Bogotá. 1983. 290 p.
- Ensayos económicos para la producción nacional piscícola.
 Bogotá. 2 p.
- 11. _____. Síntesis a la problemática del mercadeo pesquero y bases para su planificación. Bogotá. 1984. 46 p.
- 12. _____. Estudio de prefactibilidad para un frigorífico polivalente en la ciudad de Honda INDERENA. Bogotá, 1979. p.v.
- 13. REY, F. y AMAYA, R. Cartilla para el criador de peces en aguas cálidas Bogotá. 1983. 44 p.
- 14. SIMPOSIO SISTEMAS DE ACUICULTURA PARA COLOMBIA. Memorias. Manizales, Serie Memorias de eventos científicos. 9: 16-27, 35-39. 1984.

ANEXOS

ANEXO 1

BALANCE HIDRICO

Mes												
Variable	ш	u.	Σ	A	Σ	r	ŋ	A	S	0	Z	۵
Precipitación mm.	22.0	37.1	67.4	137.6	267.2	288.8	273.6	260.8	118.8	156.4	130.4	80.0
E.T.P	137.4	148.6	137.6	104.6	94.8	88.0	87.2	94.0	93.4	95.0	106.8	118.
Almacenamiento mm.	1	ı	1	33.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	62.0
Exceso	ı	1	1	ı	105.0	200.8	186.4	166.8	25.4	61.8	23.6	
Déficit	53.4	111.5	70.2		l	. 1	ı	ı	ı	-	ı	ı

Fuente. Cálculos del Grupo de Estudio

ANEXO No. 2

REQUERIMIENTO DE AGUA PARA EL ESTANQUE DE 5000 MT², VOLUMEN 8.200 MT³, ESPEJO DE AGUA 5936 MT²

	Volumen	Pre	cipitación	Evap	oración	Volumen	Bombeo
Mes	Inicial	mm.	M ³	mm.	M ³	Final	M_3
Enero	0.0	27.5	163.2	171.8	1.019.0	´0.0	
Febrero	0.0	46.4	275.4	186.0	1.104.0	.0.0	
Marzo	0.0	67.4	400.0	172.0	1.020.0	0.0	
Abril	0.0	172.0	1.020.0	131.0	777.0	243.0	
Mayo	243.	267.2	1.586.	119.0	706.0	1.123.0	
Junio	1.123.	361.0	2.142	110.0	653.0	2.612.0	
Julio	2.612	342.0	2.030.	109.0	647.0	3.995.0	
Agosto	3.995.	326.0	1.935.	94.0	558.0	5.372.0	
Setiembre	5.372	236.0	1.400	117.0	694.5	6.077.0	2.122
Octubre	8.200	196.0	1.163	119.0	706.3	8.200	
Noviembre	8.200	163.0	967.7	133.6	810.8	8.200	
Diciembre	8.200	100.0	593.6	147.5	875.5	7.918	282
Enero	8.200	27.5	163.4	171.8	1.019.0	7.344	856
Febrero	8.200	46.4	275.4	186.0	1.104.0	7.371	828
Marzo	8.200	67.4	400.0	172.0	1.020.0	7.580	620
Abril	8.200	172.0	1.020.0	131.0	777.0	8.200	+
Mayo	8.200	267.2	1.586.0	119.0	706.0	8.200	-
Junio	8.200	361.0	2.142.0	110.0	653.0	8.200	-
Julio	8.200	342.0	2.030.0	109.0	647.0	8.200	-
Agosto	3.698*	326.0	1.935.0	94.0	558.0	5.075	3.125
Setiembre	8.200**	236.0	1.400.0	117.0	694.5	8.200	

Fuente: Cálculos del grupo de estudios

Digitized by Google

^{*} sacado cosecha

^{**} Siembra nueva cosecha

ANEXO No. 3

REQUERIMIENTO DE AGUA PARA EL ESTANQUE
DE 3000 MT², VOLUMEN 5.112 M³, ESPEJO DE AGUA 3.816 MT²

78

Mes	Volumen	Precip	oitación	Evapo	ración	Volumen	Bombeo
	Inicial	mm.	м ³	mm.	M ³	Final	_M 3
Enero	0.0	27.5	105.0	171.8	656,0	0.0	0.0
Febrero	0.0	46.4	177.0	186.0	709,0	0.0	0.0
Marzo	0.0	67.4	257.1	172.0	656.0	0.0	0.0
Abril	0.0	172.0	656.3	131.0	499.0	157.0	0.0
Mayo	157.0	267.2	1.020.0	119.0	453.0	724.0	0.0
Junio	724.0	361.0	1.378.0	110.0	422.0	1.680.0	0.0
Julio	1.680.0	342.0	1.305.0	109.0	417.0	2.568.0	0.0
Agosto	2.568.0	326.0	1.244.0	94.0	359.0	3.453.0	0.0
Setiembre	3.453.0	236.0	900.5	117.0	455.0	3.898.0	1.214.
Octubre	5.112.0	196.0	748.0	119.0	453.0	5.112.0	0.0
Noviembre	5.112.0	163.0	622.0	133.6	510.0	5.112.0	0.0
Diciembre	5.112.0	100.0	382.0	147.5	563.0	5.043.0	463.0
Enero	5.112.0	27.5	105.0	171.8	656.0	4.561.0	551.0
Febrero	5.112.0	46.4	177.0	186.0	709.0	4.580.0	532.0
Marzo	5.112.0	67.4	257.1	172.0	656.0	4.713.0	399.0
Abril	5.112.0	172.0	656.3	131.0	499.0	5.112.0	0.0
Mayo	5.112.0	267.2	1.020.0	119.0	453.0	5.112.0	0.0
Junio	5.112.0	361.0	1.378.0	110.0	422.0	5.112.0	0.0
Julio	5.112.0	342.0	1.305.0	109.0	417.0	5.112.0	0.0
Agosto	2.260.0*	326.0	1.244.0	94.0	359.0	3.145.0	1.967.0
Setiembre	5.112.0**	236.0	900.0	117.0	456.0	5.556.0	_

^{*} sacado cosecha

^{**} Siembra nueva cosecha

narstic.

Tent?

ANEXO No. 4

79

COSTOS PARA CONSTRUCCION DE UN ESTANQUE DE 3.000 MT² CON MOTOBOMBA

CONCEPTO	UNIDAD	CANTIDAD	PRECIO UNITARIO	VALOR TOTAL
Excavación estanque y hechura jarillones	MTS ³	3.712	141.21	\$ 524.200
<u>Insumos</u>				
Plástico	Kgs.	520	310	161.200
Motobomba autocebante 87. 2",3HP.	U	1	44.900	44.900
Manguera succión de 6 Mts	Mts	1	2.400	2.400
Manguera polietileno 2",calibre 40	Mts	200	160	32.000
Arte pesquero (Malla y otros)	U	-	-	50.000
Tubería drenaje P.V.C. 6"	Mts	9	730	6.570
Codo P.V.C. 6"	U	1	1.500	1.500
Subtotal insumos y excavación				\$ 822.770
Mano de Obra	Jornal			
Plastificada	п	12	600	7.200
Empalizada contención jarillones	"	110	600	66.000
Cubrimiento capatierra (0.15 Mts)	11	30	600	18.000
Colocación tubería drenaje	н ′	1	600	600
Subtotal mano de obra				\$ 91.800
Total costos inversión				\$ 914.570

80 ANEXO No. 5

COSTOS DE OPERACION DE UN ESTANQUE DE 3.000 MT² CON MOTOBOMBA

CONCEPTO	UNIDAD	CANTIDAD	PRECIO UNITARIO	VALOR TOTAŁ
		0.11.12		
<u>Insumos</u>				
Alevinos	U	3.000	\$ 0.00	\$ 30.000
Bolsas plásticas	U	25	10.00	250
Transp. de insumos e implementos	Ton.	6.0	10.000.00	60.000
Transp. a sitio de siembra	Ton.	6.0	2.000.00	12.000
Fertilizantes (1-3-1)	Kg.	374	34,50	12.903
Alimentos concentrados	Kg.	4.500	42.00	189.000
Colfos	Kg.	300	6,00	1.800
Combustibles	E.L.	131	200	26.000
Sub-total				\$ 332.153
Mano de Obra				
Encdlamiento y fertilización Llenado y mantenimiento es-	Jornales	65	\$ 600.00	\$ 3.900
tanque	ıı ı	12	600.00	7.200
Siembra	"	2	600.00	1.200
Alimentación	n n	33	600.00	19.800
Mantenimiento estanque	"	24	600.00	14.400
Cosecha	"	10	600.00	6.000
Preparación producto	11	13	600.00	7.800
Sub-total				\$ 60.300
Total costo operación				\$ 392.453

GASTOS DE CONSTRUCCION DE UN ESTANQUE DE 3.000 MT²
CON MOLINOS DE VIENTO TIPO GAVIOTAS

ANEXO No. 6

CONCEPTO	UNIDAD	CANTIDAD	PRECIO UNITARIO	VALOR TOTAL
Excavación estanque y hechura de	MT ³	2.710	141 01	¢ 504 000
jarillones	MI	3.712	141.21	\$ 524.200
Insumos				
Plásticos	Kgs.	520	310	161.200
Molinos MV ₂ Sencillo	U	9	85.450	769.050
Artes pesqueros (Malla y otros)	U	-	-	50.000
Tuberia drenaje R.V.C-6"	Mts.	9	730	6.570
Tubo Grees 10"	Mts.	6	1.400	8.400
Codo PUC. 6"	U	1	1.500	1.500
Bases anclaje	-	4.5	2.400	10.800
Sub-total insumos y excavación				\$ 1:531.720
Mano de Obra	Jornales			
Plastificada	"	12	600	7.200
Empalizada protección jarillones	11	110	600	66.000
Hechura 9 pozos 5 Mts. prfundidad	II II	63	600	37.800
Montaje molinos	11	9	600	5.400
Colocación tubería y anclaje	"	2	600	1.200
Cubrimiento, capatierra	ıı ıı	30	600	18.000
Construcción zanja colectora				
$(30 \times 1 \times 0.5)$	ll II	15	600	9.000
Sub-total Mano de obra				\$ 144.600
Total Inversión				\$ 1'676.320

82 ANEXO No. 7

COSTOS DE OPERACION DE UN ESTANQUE DE 3.000 MT.² MOLINOS DE VIENTO TIPO GAVIOTAS

INSUMOS	UNIDAD	CANTIDAD	PRECIO UNITARIO	VALOR TOTAL
Alevinos	U	3.000	10	\$ 30.000
Bolsas plásticas	U	25	10	250
Transp. (Insumos-real, implem,etc)	Ton.	6.5	10.000	65.000
Transporte a sitio de siembra	Ton.	6.5	2.000	13.000
Fertilizante	Kgs.	374	34.5	12.903
Alimentos	Kgs.	4.500	42	189.000
Colfos	Kgs.	300	6	1.800
Sub-total insumos				\$ 311.953
Mano de Obra				
Encolamiento y fertilización	Jornal	6.5	600	3.900
Llenado y mant. nivel estanque	Jornal	4	600	2.400
Siembra	Jornal	2	600	1.200
Alimentación	Jornal	33	600	19.800
Mant _e estánque	Jornal	24	600	14.400
Cosecha	Jornal	10	600	6.000
Preparación producto	Jornal	13	600	7.800
Subtotal Mano de obra				\$ 55.500
Total costo operación				\$ 367.453

ANEXO No. 8

COSTOS DE CONSTRUCCION DE UN ESTANQUE DE 3.000 M²

CON ENERGIA: SOLAR

CONCEPTO	UNIDAD	CANTIDAD	PRECIO UNITARIO	VALOR TOTAL
Excavación estanque y hechura jarillones	M ³	3.712	141.21	\$ 524.200
<u>Insumos</u>				
Plásticos.	Kgs.	520	310	161.200
Módulos solares y motobomba	_	-	-	1'400.000
Mangueras Polietileno	Mts.	200	160	32.000
Arte pesquero (Malla y otros)	-	-	-	50.000
Tubería drenaje P.V.C 6"	Mts.	9	730	6.570
Codo drenaje P.V.C. 6"	U	1	1.500	1.500
Subtotal insumos y excavación				2'175.570
Mano de Obra	Jornales			
Plastificada	"	12	600	7.200
Empalizada contención jarillones		110	600	66.000
Cubrimiento capatierra	ıı ı	30	600	18.000
Sub-total Mano de obra			<u>-</u>	91.200
Total Costos inversión		2.		\$ 2'266.670

84 AMEXO No. 9

COSTO DE OPERACION DE UN ESTANQUE DE 3.000 M^2 CON ENERGIA SOLAR

INSUMOS	UNIDAD	CANTIDAD	PRECIO UNITARIO	VALOR TOTAL
Alevinos	U	3.000	10	\$ 30.000
Bolsas plásticas	U	25	10	250
Transp. (Ins.mod.,implem,etc.)	Ton	6.5	10.000	65.000
Transp. a sitio de siembra	Ton.	6.5	2.000	13.000
Fertilizante	Kg.	374	34.5	12.903
Alimentos	Kg.	4.500	42	189.000
Colfos	Kg.	300	6	1.800
Subtotal Insumos				\$ 311.953
Mano de Obra				
Encolamiento y fertilización	Jornal	6.5	600	3.900
Llenado y mant. nivel estanque	Jornal	4	600	2.400
Siembra	Jornal	2	600	1.200
Alimentación	Jornal	33	600	19.800
Mant. estanque	Jornal	24	600	14.400
Cosecha	Jornal	10	600	6.000
Preparación producto	Jornal	13	600	7.800
Subtotal Mano de Obra				\$ 55.500
Total Costos Operación				\$ 367.453

ANEXO No. 10

COSTOS DE CONSTRUCCION DE UN ESTANQUE DE 5.000 M²

CON MOTOBOMBA

			PRECIO	VALOR
INVERSION	UNIDAD	CANTIDAD	UNITARIO	TOTAL
				·
Excavación estanque y hechura	_M 3	5.366	228.4	\$ 1'225.600
jarillones	M	5.300	220.4	\$ 1,552.000
Insumos				
1115UIII05				
Plástico	Kg.	867	310	268.700
Motobomba autoce ante 87, 2", 3HP.	Un	1	44.900	44.900
Manguera succión de 6 Mts.	Mts.	1	2.400	2.400
Manguera polietileno 2" Calib. 40	Mts.	200	160	32.000
Artes pesqueras (Malla y otros)	Un.	٧	50.000	50.000
Tubería drenaje P.V.C. 6"	Mts	9	730	6.570
Codo P.V.C. 6"	Un.	1	1.500	1.500
Subtotal insumos y excavación				1'631.670
Mano de Obra				
Plastificada	Jornal	20	600	12.000
Empalizada	н	128	600	76.800
Cubrimiento capatierra	п	43	600	25.800
Colocación y control tubería dre-		i		
naje	11	2	600	1.200
Subtotal mano de obra		·		115.800
Total costos de inversión				\$ <u>1'747.470</u>

หร*ู*เซียส**0นัส**ก

arcu 6c

ANEXO No. 11 costos de operación de un estanque de 5.000 $\mbox{\em m}^2$

CON MOTOBOMBA

INSUMOS	UNIDAD	CANTIDAD	PRECIO UNITARIO	VALOR TOTAL
Alevinos	U	5.000	10	\$ 50.000
Bolsas plásticas	U	40	10	400
Transp. (Insumos, mat. implem.etc)	Ton.	9.5	10.000	95.000
Transp. a sitio siembra	Ton.	9.5	2.000	19.000
Fertilizante	Kg.	590	34.5	20.355
Alimentos	Kg.	7.500	42	315.000
Cdlfos	Kg.	500	6	3.000
Combustibles	Gls.	210	200	42.045
Total insumos				\$ 544.800
Mano de Obra				
Encòlamiento y fertilización	Jornal	11	600	6.600
Llenado y mant. nivel estanque	Jornal	20	600	12.000
Siembra	Jornal	3	600	1.800
Alimentación	Jornal	55	600	33.000
Mant. estanque	Jornal	36	600	21.600
Cosecha	Jornal	15	600	9.000
Preparación producto	Jornal	21	600	21.600
Total mano de obra				96.600
Total Costos operación				\$ 641.400

COSTOS PARA CONSTRUCCION DE UN ESTANQUE DE 5.000 MTS² CON MOLINOS DE VIENTO TIPO GAVIOTAS

CONCEPTO	UNIDAD	CANTIDAD	PRECIO UNITARIO	VALOR TOTAL
Excavación estanque y hechura jarillones	MTS ³	5.366	228.40	\$1'225.600
				·
Insumos				
Plástico	Kg.	867	310	268.700
Molinos MV2 sencillo	U	14	85.450	1'196.300
Artes pesqueros (Malla y otros)	-	-	-	50.000
Tubería drenaje P.V.C. 6"	Mts.	9	730	6.570
Tubo Grees 10"	Mts.	6	1.400	8.400
Codo P.V.C. 6"	U	1	1.500	1.500
Bases anclaje	-	7	2.400	16.800
Subtotal insumos y excavación				\$2'773.870
Mano de Obra				
Plastificada	Jornales	20	600	12.000
Empalizada	u u	128	600	76.800
Hechura pozos ()	li li	98	600	58.800
Montaje molinos	li li	14	600	8.400
Colocación tubería anclaje	H.	2	600	12.000
Cubrimiento capatierra	li li	43	600	25.800
Construcción zanja colectora				
(30x1x0.5)	11	15	600	9.000
Subtotal mano de obra				\$ 192.000
Total costos inversión				\$2'965.870

Fuente: Grupo de estudio

Digitized by Google

88 ANEXO No. 13

COSTOS DE OPERACION DE UN ESTANQUE DE 5.000 MT² CON MOLINOS DE VIENTO TIPO GAVIOTAS

INSUMOS	UNIDAD	CANTIDAD	PRECIO UNITARIO	VALOR TOTAL
	·			
Alevinos	U	5.000	10	\$ 50.000
Bolsas plásticas	U	40	10	400
Transp. (Insumos-real,impl etc)	Ton.	10.5	10.000	105.000
Transp. a sitio siembra	Ton.	10.5	2.000	21.000
Fertilizante	Kg.	590	34.5	20.355
Alimentos	Kg.	7.500	42	315.000
Colfos	Kg.	500	6	3.000
Subtotal insumos				\$ 514.755
Mano de Obra				
Encolamiento y fertilización	Jornal	11	600	6.600
Llenado y mant. nivel estanque	11	4	600	2.400
Siembra	11	3	600	1.800
Alimentación	11	55	600	33.000
Mant. estanque	II	36	600	21.600
Cosecha	11	15	600	9.000
Preparación producto	11	21	600	12.600
Subtotal mano de obra				\$ 87.000
Total costos operación				\$ 601.755

ANEXO No. 14

COSTO DE CONSTRUCCION DE UN ESTANQUE DE 5.000 MTS²

ENERGIA SOLAR

89

CONCEPTO	UNIDAD	CANTIDAD	PRECIO UNITARIO	VALOR TOTAL
Excavación estanque y hechura jarillones	M3	5.366	228.4	\$ 1'225.600
Insumos				
Plástico	Kgs.	867	310	268.700
Módulos solares y motobomba	-	-	-	2'320.000
Mangueras polietileno	Mts	200	160	32.000
Arte pesquero (Mallas y otros)	-	-	-	50.000
Tubería drenaje P.V.C 6"	Mts	9	730	6.570
Codo drenaje P.V.C. 6"	U	1	1.500	1.500
Subtotal insumos y excavación				3'904.370
Mano de Obra	Jornales			
Plastificada	u	20	600	12.000
Empalizada contención jarillones	п	128	600	76.000
Cubrimiento capatierra	n	43	600	25.800
Colocación y control tubería				
drenaje	ıı	2	600	1.200
Subtotal mano de obra				115.800
Total costo inversión				\$ 4'020.170

10....

COSTOS DE OPERACION DE UN ESTANQUE DE 5.000 M²
CON ENERGIA SOLAR

CONCEPTO	UNIDAD	CANTIDAD	PRECIO UNITARIO	VALOR TOTAL
CONSTITUTION	ONZENIE	0/11/12/12	01121711120	101/12
Insumos		·		
Alevinos	Un.	5.000	10	\$ 50.000
Bolsas plásticas	Un.	40	10	400
Transp. (Insumos, implement.etc)	Ton.	10.5	10.000	105.000
Transp. a sitio de siembra	Ton.	10.5	2.000	21.000
Fertilizante (1-3-1)	Kg.	590	34.5	20.355
Alimento (Concentrado)	Kg.	7.500	42	315.000
Colfos	Kg.	500	6	3.000
Subtotal insumos	,			\$ 514.755
<u>Mano de Obra</u>				
Encolamiento y fertilización	Jornal	11	600	6.600
Llenado y mantenimiento nivel				
estanque	n	4	600	2.400
Siembra	11	3	600	1.800
Alimentación	11	55	600	33.000
Mantenimiento estanque	11	36	600	21.600
Cosecha	n I	15	600	9.000
Preparación producto	n	21	600	£2.600
Subtotal mano de obra				87.000
Total costos operación		·		\$ 601.755

ANEXO No. 16

PLAN DE INGRESOS Y EGRESOS CON EL FLUJO NETO DE INVERSIONES PARA UN ESTANQUE DE 5.000 MT².CON:MOTOBOMBA

						9	1				 							_			-1
15	1.019.010	891.000		74.715	8.980	480	10.667	16.667	807	112.316	544.800	96.600	641.400	753.716	137.284	127 204	111 216	116.310	249.600	1.268.610	
14	-0-	891.000		74.715	8.980	480	16.667	16.667	807	112.316	544.800	96.600	641.400	753.716	137.284	127 284	112 216	016.311	245.600	249.600	7
13	ģ	891.030		74.715	8.520	6 50	10.667	16.667	857	112.316	544.800	059.96	641.40	753.716	137.284	137 254	112 216	116.319	249.600	249.670	7
12	(82.000)	891.000		74.715	8.980	480	10.667	16.667	807	112.316	544.800	96.600	641.400	753.716 753.716	137.284	137 284 137 284	112 316		249.600	167.600	-
11	þ	891.000	1	74.715	8.980	480	10.667	16.667	807	112.316	544.800	96.600	641.400	753.716	137.284 137.284	137 284	112 316	717:311	249.600	249.600 167.600	
o .	(159.170)	891.000	;	74.715	8.980	480	10.667	16.667	807	112.316	544.800	96.600	641.400	753.716	137.284	137 284	112 3316	0100111	249.600	50.430	
6	. (82.000)	891.000	;	74.715	8.980	480	10.667	16.667	807	, 112.316	544.800	009.96	641.400	753.716	137.284	137 784	112 316	016:311	249.600	167.600	
80	- -	891.000	;	74.715	8.980	480	10.667	16.667	807	112.316	544.800	96.600	641.400	753.716	137.284	137.284	112 316	200	249.600	249.600	
7	-0-	891.000		74.715	8.980	480	10.667	16.667	807	112.316	544.800	96.600	641.400	753.716	137.284	137, 284	112 316	217.	249.600	249.600	
9	(82.000)	891.000		74.715	8.980	480	10.667	16.667	807	112.316	 544.800	96.600	641.400	753.716	137.284	137, 284	112 316	111:310	249.600	167.600	-
ĸ	(47.300)	891.000		74.715	8.980	480	10.667	16.667	807	112.316	544.800	96.600	641.400	753.716	137.284	137 284	112 316	116.310	249.600	202.300	
4	0-	891.000		74.715	8.980	480	10.667	16.667	807	112.316	544.800	96.600	641.400	753.716	137.284	137 284	11. 216	114.310	249.600	009.615	!
m	(82.000)	891.000		74.715	8.980	480	10.667	16.667	807	112.316	544.800	96.600	641.400	753.716	137.284	137 284	112 316	016.311	243.500	167.500	-
2	-0-	891.000		74.715	8.980	480	10.667	16.667	807	112.316	544.800	96.600	641.400	753.716	137.284	132 28.1	112 216	116.310	249.600	249.600	-
	þ	o-		74.715	8.980	480	10.667	16.667	807	112.316	544.800	96.600	641.400	753.716	(753.716)	(312 236)	110 216	116.310	(641.400)	(641.400)	
0	(2'338.870)																			(2.338.870)	

Coogle

.

.

:::

•

. . .

ANEXO No. 17

FLUJO DE CAJA PARA UN ESTANQUE DE 5.000 MT² CON MOTOBUMBA

	-	2	3	4	2	9	7	80	. 6	01	11	12	13	±	. 51
CONCEPTO Venter Brutas	d	000	000 188	000 184	000	891,000	891.000	891.000	891.000	891.000	891.000	891.000	891.000	891.000	891.000
(4.455 x 200)	þ											-			
Egresos:							,		•						
A. Insumos							•								
a) Compras alevincs	20.000									•					
b) Bolsas plástices	400		-												
c) Transp. insumos	95.000														
d) Transp. sitto siemb.	19.000														
e) Fertilizantes	20.000														
f) Alimentos	315.000						-								
g) Colfos	3.000														
h) Combustibles	42.400														
	544.800	544.800	544.800	544.800	544.800	544.900	544.800	544.800	544.800	544.800	544.800	544.800	544.800	544.800	244.800
B. Mano de Obra					-										
• a) Encolamiento y fert.	6.600		•										•		
b) Llenado y mant.															
estanque	12.000														
c) Siembra	1.800														
d) Alimentación	33.000		_												
e) Mantenimiento estang.	21.600														
f) Cosecha	9.000									•			•		
g) Preparación preduct.	12.600														
	96.600													:	8
Total egresos	641.400	641.400	641.400	641,400	641.400	641.400	641.400	641.400	641.400	641.400	641.400	041.400	004.140	3.1.40	3
Fludo Meto	(641.400) 249.600	249.600	249.600	249.600	249.600	249.600	249.600	249.600	249.600	249.600	249.600	249.600	249.600	249.600	249.600
Saldo final de ca;a	(641.400) (391.800)	(391.800)	(142.200)		357.000	606.600	856.200	856.200 1'105.800 1	1,355.400	1,605.000	1'854.600 2'104.200	2,104.200	2,353,800 2,603,400 2,853,000	2,603.400	.853.000
															1

Fuente: Grupo de trabajo